Abstract
Leaf anatomy, stomatal density, and leaf conductance were studied in 10 species of Spartina (Poaceae) from low versus high salt marsh, and freshwater habitats. • Internal structure, external morphology, cuticle structure, and stomatal densities were studied with light and electron microscopy. Functional significance of leaf structure was examined by measures of CO2 uptake and stomatal distributions. • All species have Kranz anatomy and C 4 δ13C values. Freshwater species have thin leaves with small ridges on adaxial sides and stomata on both adaxial and abaxial sides. By contrast, salt marsh species have thick leaves with very pronounced ridges on the adaxial side and stomata located almost exclusively on adaxial leaf surfaces. Salt marsh species also have a thicker cuticle on the abaxial than on the adaxial side of leaves, and CO2 uptake during photosynthesis is restricted to the adaxial leaf surface. • Salt marsh species are adapted to controlling water loss by having stomata in leaf furrows on the adaxial side, which increases the boundary layer, and by having large leaf ridges that fit together as the leaf rolls during water stress. Differences in structural-functional features of photosynthesis in Spartina species are suggested to be related to adaptations to saline environments.
Document Type
Article
Source Publication
New Phytologist
Version
Published Version
Publication Date
10-1-2009
Volume
184
Issue
1
First Page
216
Last Page
233
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rights
© 2009 New Phytologist.
Recommended Citation
Maricle, B.R., Koteyeva, N.K., Voznesenskaya, E.V., Thomasson, J.R. and Edwards, G.E. (2009), Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytologist, 184: 216-233. https://doi.org/10.1111/j.1469-8137.2009.02903.x
Comments
For questions contact ScholarsRepository@fhsu.edu