Introduction

The overuse of antibiotics in both human medicine and agriculture has contributed greatly to the crisis we experience today. In the United States alone, at least 2 million people acquire resistant infections with approximately 23,000 of these cases resulting in death each year (CDC, 2013). MRSA infection, in otherwise healthy individuals, affects the superficial skin and soft tissues. More serious complications can arise though, affecting the lungs (Figure 1), bone, and deep soft tissues. MRSA is able to avoid the body’s immune system through the production of biofilm and certain toxins. These virulence factors, in combination with multidrug resistance, result in high morbidity and mortality rates (AAM, 2015).

Why Bacillus spp?

After a fruitless search for pathogens in soil, Selman Waksman suggested their destruction may be a result of the soil inhabiting microbe. The most commonly antibiotic resistant soil organisms can be divided into four major genera, one of which, the spore forming bacteria Bacillus, is effective against Gram-positive pathogens (Waksman & Woodruff, 1940). Ubiquitous microorganisms employ strategies to survive in diverse environments, thus controlling the growth of their neighbors. One such organism, Bacillus subtilis, was found to inhibit the growth of Staphylococcus aureus as a result of these strategies. Gonzalez, et al., (2011) hypothesized that this may explain the lack of infection in the 30% of the population colonized with S. aureus.

Isolation of soil Bacillus spp with inhibitory effects on methicillin-resistant Staphylococcus aureus (MRSA)

Kaitlin Moore & Eric T. Gillock
Department of Biological Sciences, Fort Hays State University

Approach

Isolation of soil Bacillus spp (Figure 2)

• 0.25g soil, 4.5mL TSB, & 500µL sodium acetate trihydrate
• Incubate at 30°C for 4 hours on shaker at 250 rpm
 – While B. anthracis spores will germinate, other Bacillus spores will not
• Heat 200µL at 80°C for 10 minutes
 – Vegetative B. anthracis cells are killed
• Swab a lawn on TSA & incubate at 30°C for 48 hours

Perpendicular streak tests (Figure 4)

• Test purified environmental isolates against MRSA strains

Results

Currently, three isolates of approx. 30 soil samples have demonstrated significant activity against MSSA and MRSA strains in the perpendicular streak tests (Figure 4). These isolates were sent to MIDI labs for ID (Table 1). A spent media analysis has been performed on environmental isolate “#3.” Though no zones of inhibition have been observed to date, there has been an obvious impact on the density of the surrounding lawn of S. aureus.

Table 1: Classification of environmental isolates based on 16S ribosomal subunit sequence.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>MIDI Labs ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Bacillus amyloliquefaciens</td>
</tr>
<tr>
<td>#3</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>#13</td>
<td>Bacillus mojavensis</td>
</tr>
</tbody>
</table>

What Next?

Bacillus is still a promising genus as a source for antimicrobials effective against Gram-positive organisms. In addition to continuing spent media analyses, high pressure liquid chromatography (HPLC) will soon be employed to determine the components of the promising environmental isolates.

Acknowledgments

This project was supported by NIH grant number P20GM103418 from the INBRE program.

Literature Cited

