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ABSTRACT 

Museum specimens are a vital data source for many types of studies. One relatively new 

use includes studying methylation patterns. Methylation patterns are a form of epigenetics or 

how gene expression changes without alteration of the genetic code. These patterns have been 

examined in many mammals. However, the focus has previously been on overall epigenetic 

patterns. Few studies have investigated whether methylation patterns differ across tissue types,  

time, or preservation method. In this study, I compared methylation patterns in muscle, liver, toe 

pads, and nasal bones from Peromyscus leucopus (white-footed mouse) museum specimens 

collected in 2022, 2018, 2014, and 2008 using reduced-representation bisulfite sequencing. I 

found methylation patterns were most similar within an individual and there was little to no 

clustering of methylation patterns based on tissue type or collection year. Additionally, tissue 

preservation in ethanol had no effect on methylation patterns. This study illuminates the role of 

tissue type and preservation method in methylation patterns of P. leucopus and thereby provides 

an important resource for researchers seeking to study DNA methylation in museum specimens. 
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INTRODUCTION 

Museum specimens are an invaluable resource that can be used as a window into the 

biological past. These collections of specimens can range from skeletons to tissues, and from 

plants to animals to fungi. Historic specimens can include those collected centuries ago to those 

collected recently (Burrell et al., 2015). Mammals as a group are a particularly well-preserved 

taxon that is well-suited for genomic studies (Cook & Light, 2019; Lindblad-Toh, 2020). These 

specimens provide crucial information – a biological snapshot – of the time and place they were 

collected which can aid in the conservation and management of species and their environments. 

Such specimens have been used to examine patterns of evolution, morphology, natural history, 

phylogenetics, and more recently, epigenetics (Cook & Light, 2019).  

Many types of museum specimens can be utilized in the study of genetics and, more 

specifically, epigenetics. Genetics is the study of heritable changes the DNA sequence (Moore et 

al., 2013). The genetic sequence refers to the order in which the nucleotide bases adenine, 

thymine, guanine, and cytosine are found in a strand of DNA. These bases come together to form 

the double helix seen in DNA. This double helix is wound around proteins called histones and 

these groups form a nucleosome. A series of condensed nucleosomes that wrap around each 

other form chromatin. How tightly the nucleosomes or chromatin are wound can affect gene 

expression (Martin & Zhang, 2007). A genotype codes for the appearance of the phenotype of an 

individual. The phenotype of an individual is the culmination of all of its expressed 

characteristics (Nachtomy et al., 2007).  

Epigenetics examines heritable changes in gene expression that occur without changes to 

the genetic sequence. One of the epigenetic mechanisms of gene expression is methylation. 

Methylation of DNA occurs with the addition of a methyl group to the fifth carbon position on 
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the nucleotide base cytosine, resulting in the formation of 5-methylcytosine. A methyl group is 

added via a residue of DNA methyltransferases from S-adenosyl methionine. The 

methyltransferases are a series of enzymes that transfer a methyl group via catalytic nucleophilic 

attack (Lennard, 2010).  

Epigenetic methylation is one of the underlying causes of phenotypic plasticity. 

Phenotypic plasticity is when an individual’s developmental or environmental conditions can 

cause the same genotype to produce different phenotypes. Phenotypes include measurable traits 

including hair color, eye color, and susceptibility to diseases (Nachtomy et al., 2007). When 

DNA becomes wound so tightly that there is a loss of gene expression, it is referred to as 

heterochromatin, which can lead to suppression or expression of different genes and therefore 

different phenotypes in the individual. When DNA is wound more loosely, called euchromatin, 

the transcription of the genes in that nucleosome increases, increasing gene expression, resulting 

in phenotypic differences (Tamaru, 2010). In addition to its role in phenotypic plasticity, changes 

in methylation patterns have been linked to cancer and other health problems. DNA methylation 

can lead to the silencing of tumor suppressor genes (Lakshminarasimhan & Liang, 2016) and has 

also been linked to cardiovascular diseases and nervous disorders (Kandi & Vadakedath, 2015).  

Methylation typically occurs on cytosine bases situated next to guanine bases; these are 

known as CpG sites. CpG islands – long stretches of DNA that contain a higher-than-average 

number of CpG sites – often contain promoter regions (Blackledge & Klose, 2011). Before DNA 

can be transcribed to RNA, transcription binding factors must attach to these promoter regions. 

DNA that is methylated winds more tightly around the histones and nucleosomes, decreasing 

gene expression because transcription binding factors are not able to reach the promotor regions, 
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so the DNA is transcribed at lower rates compared to non-methylated regions (Moore et al., 

2013).  

A variety of methods have been used to quantify epigenetic methylation patterns to better 

understand their influence on morphology, physiology, ecology, and evolution. One technique 

gaining popularity in methylation studies is reduced representation bisulfite sequencing (RRBS), 

which allows for 3-5% of a genome to be examined. RRBS works by using a methylation 

insensitive restriction enzyme (MspI) to cut the DNA near CpG islands (Gu et al., 2011). Once 

the DNA has been cut and adapters added, bisulfite conversion takes place. Bisulfite conversion 

works by converting unmethylated cytosines into uracil then to thymine after PCR. Then, the 

treated DNA is purified and sequenced on an Illumina platform.  

Methylation patterns have been studied in a variety of organisms, but most of the focus 

has been on model organisms. Model organisms are those that live in the laboratory and have 

been studied extensively. Examples include Drosophila (common fruit fly), C. elegans 

(nematodes), Homo sapiens (humans), and Mus musculus (mouse) (Model Organisms | NIH 

Center for Scientific Review, n.d.). Non-model organisms typically have not been domesticated 

or used in clinical studies. Several previous epigenetics studies on non-model organisms have 

focused on a single tissue type (Crossman et al., 2021; Rubi et al., 2020; Weyrich et al., 2016). 

One such study used nasal bones of deer mice in the genus Peromyscus from museum collections 

to examine methylation patterns across time (Rubi et al., 2020). They compared changes in 

methylation between historic and recent populations during an ongoing range expansion. The 

study was successful in using 76-year-old specimens to extract DNA from bones and perform 

bisulfite conversion to quantify methylation (Rubi et al., 2020). They were able to investigate 
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global methylation in specimens of different ages and that the global methylation did not vary 

among different ages of the specimens.    

An increasing number of studies have used methylation patterns of CpG islands to 

answer a variety of ecological questions in wildlife. For example, stress is hypothesized to affect 

methylation patterns in mammals (Murgatroyd et al., 2009). A study comparing two killer whale 

populations examined 25 CpG sites found in three previously studied stress response genes to 

investigate epigenetic manifestations of stress using skin biopsies collected from free swimming 

animals (Crossman et al., 2021). The study used two distinct whale populations, the Northern 

Resident killer whale population and Southern Resident killer whale population in the Pacific 

Northwest. The researchers found that neither age nor sex affected methylation patterns. Even 

though the two populations were genetically distinct, they had similar levels of stress based on 

the methylation patterns of the three genes of interest (Crossman et al., 2021). However, at two 

of the CpG sites they found different methylation levels consistent with stress exposure in the 

killer whale populations.   

Despite the increasing number of epigenetics studies, many methodological questions 

remain, including the extent to which methylation patterns differ between tissues within the same 

individual. A study in humans investigated how tissue types correlated with methylation patterns 

and gene expression. This study used 12 tissues including sperm, fetal liver, CD4+ lymphocytes, 

CD8+ lymphocytes, fibroblasts, fetal skeletal muscle, placenta, keratinocytes, melanocytes, 

skeletal muscle, heart muscle, and liver (Fan & Zhang, 2009); of the 12 tissues used, 11 were 

somatic. The researchers found that the CpG island methylation patterns in various somatic 

tissues were extremely similar to each other. They also found the CpG island methylation 

profiles in germ cells were distinct from somatic cells. This suggests that different tissues share 
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similar methylation profiles depending on their origin (i.e., somatic or germ cells). In addition, 

they did not find an obvious relationship between CpG island methylation and gene expression 

across these tissue types (Fan & Zhang, 2009).  

One of the few studies comparing methylation across tissue types in a non-model 

organism focused on differences in blood, brain, liver, and gonad tissues in the house sparrow 

(Passer domesticus; (Shi, 2021)).  The goal of the study was to examine the amount of 

methylation present in different tissue types between the sexes. The researcher used RRBS to 

quantify methylation patterns of the different tissues (brain, liver, blood, and gonads) to compare 

the amounts of methylation between the tissues and blood. Blood is often used to quantify 

methylation in animals (Macartney-Coxson et al., 2020); however, no one had quantified 

differences in methylation between blood and tissues. The researcher found that blood had the 

lowest number of methylated sites compared to the other tissues (Shi, 2021). This suggests that 

blood may not provide a full picture of the methylation patterns in an individual, so should be 

used with caution for methylation studies. It also highlights the lack of studies examining 

differences in methylation patterns across tissues and time for non-model organisms.  

Previous studies of non-model organisms typically focus on differences in methylation 

patterns between different tissues or over differing temporal and spatial gradients (Blake et al., 

2020; B. Zhang et al., 2013). Aside from the house sparrow study cited above (Shi, 2021), little 

research has considered the role of tissue type and time in methylation patterns for any non-

model species, thus it is unknown how these factors influence epigenetic studies (Husby, 2022). 

In addition, little is known about how methylation patterns differ across time or with 

preservation method, although some researchers have suggested investigating this question 

should be a priority (Hahn et al., 2020). At the time of writing, there were currently no studies 
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published that study how ethanol preservation affects methylation patterns. Despite the growing 

prevalence of methylation studies in model and non-model organisms, including wildlife, there 

remains open questions and lack of data on best practices. If there are differences in methylation 

between tissue types, then this should be considered when designing studies. Additionally, if 

there are differences in methylation patterns between ethanol preserved and fresh specimens, 

then this should also be considered when designing studies.  

This study will bridge these knowledge gaps by examining epigenetic differences in the 

white-footed mouse, Peromyscus leucopus. The main goals were to investigate overall 

methylation patterns to see if there is a difference across different tissue types, time, and 

preservation method in museum specimens. If methylation patterns are more similar between 

tissue types than between individuals, I will observe samples clustering by tissue (Figure 1, 

upper left); this was the pattern I expected to observe. It would also be plausible for tissues to 

cluster by similar tissue type, in which case liver and muscle might cluster together but 

separately from skin and bone (Figure 1, lower left corner). If methylation patterns differ 

dramatically by year, I would expect four distinct clusters containing all individuals and tissues 

from a given year (Figure 1, upper right corner). If methylation patterns are similar within an 

individual but differ between individuals, I would expect to see clustering of tissue samples for 

each individual specimen (Figure 1, upper right corner). Finally, if ethanol preservation affects 

methylation patterns, I would expect samples to cluster based on preservation method (Figure 1, 

lower right corner); this is the pattern I expected to observe.  

Another goal of this study was to look at percent methylation for CpG sites and overall 

total percent methylation. This will give a picture of how well the sequencing worked, regions of 

the genome that are methylated, if there are differences in the amount of methylation between 
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tissue types, and an overall view of the amount of methylation present in the samples. None of 

these have been quantified for the species used in this study. 

METHODS 

Selection of Study Organism 

The white footed mouse, Peromyscus leucopus, is a non-model organism because it is 

found in the wild and has not been domesticated for laboratory studies. This species was chosen 

because numerous specimens and tissues were available at the Sternberg Museum of Natural 

History in Hays, Kansas which allowed for sufficient sample sizes for this study. It is an 

abundant mammal found in the Midwest and throughout Kansas. It can be identified and 

distinguished from other members of the genus Peromyscus by its lack of a bicolored tail, brown 

body with a white underbelly, long hind foot, lack of grooved incisors, and large ears covered 

with thin hair. Their habitat preference is woodlands or warm, dry forests. The white-footed 

mouse can mate throughout the year, but typically does so in the fall and spring (Lackey et al., 

1985). The gestation period for offspring is typically 24 to 28 days and number of offspring can 

range from one to nine with the average number of offspring being four (Kansas Mammal Atlas, 

2017). Due to the relative quickness of its reproductive state, the white-footed mouse is found in 

abundance in the Midwest and Kansas which makes it an ideal candidate for this type of study.  

2022 Field Collection Methods 

 Six Peromyscus leucopus specimens were collected in October 2022 at a field site at the 

nature trails near the Sternberg Museum of Natural History (38.89004 N, -99.30061 W). 

Approximately 100 Sherman traps were set up along 1-4 100 meter transects that followed tree 

lines. The traps were baited with peanut butter and oatmeal balls; cotton balls were also added to 

the traps when nightly temperatures were below 50° F. Traps were checked every morning and 
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reset until six adult P. leucopus were captured. These mice were euthanized with chloroform. All 

trapping and euthanasia were performed with Kansas permit #SC-091-2022 and with FHSU 

IACUC approval.  

Tissue Sampling and DNA Extraction 

Bones, muscle, skin, and liver tissue samples preserved at the Sternberg Museum of 

Natural History were used in this study. The tissues included those from 2022, 2018, 2014, and 

2008 collected from around Hays, Kansas, specifically Barton, Ellis, and Russell counties. These 

tissues and time points were chosen based on their availability and their use as DNA sources in 

previous studies. The specimens, years, county, sex, and tissue types for this study are 

summarized in Table 1. 

The skin-derived samples came from toe pads, which were still fleshy and have been 

used for DNA extraction previously on birds (Lutgen & Burri, 2022). Two to three milligrams of 

tissue from the toe pads were scraped off using a sterilized scalpel blade. A new scalpel blade 

was used for each sample. The bone-derived samples were from nasal turbinates to minimize 

damage to the specimen. A pair of tweezers were inserted into the nasal passages and 1.5-4 

milligrams of bone was scraped into a tube. The bone samples were put into a -80℃ freezer 

before being crushed using biomasher tubes before proceeding with DNA extraction. The muscle 

and liver were preserved in ethanol (the standard tissue preservation method at the Sternberg 

Museum of Natural History); a 2-5 milligram subsample were taken for each tissue from each 

specimen. DNA was extracted from all tissue samples following the manufacturer’s instructions 

for the Qiagen DNeasy Blood and Tissue Kit (Qiagen, USA).  

The ethanol versus no ethanol study required liver and muscle samples to be immediately 

DNA extracted following specimen preparation (no ethanol). Then the muscle and liver from the 
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same individuals were placed in ethanol from November 2022 to May 2023. These samples were 

extracted using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, USA) following the 

manufacturer’s instructions.  

Amplicon Study 

 The original strategy for this study was to perform amplicon sequencing of one or more 

CpG island sites. A total of six genes were picked at random from a previously published list 

(Horvath et al., 2021). Then Kcnn2, Mafb, Nav1, Pax6, Pura, and Taok3 were chosen because 

they were protein coding, and the area was an exon. The number of CpG sites in each gene 

varied from 6 – 14. Several of the genes were in fragments and those were assembled to create 

an approximately 300-base pair (bp) fragment. These fragments were then put into a primer 

predicting software called Primer3 (Primer3, n.d.). The resulting primers were tested using the 

procedure below.  

The six primer sets (Table 2) were tested using Cytiva PurReTaq Ready-To-Go PCR 

beads under a variety of thermocycler conditions. However, only Mafb was successfully 

amplified under the following thermocycler conditions: initial denaturation 95℃ for 5 minutes, 

35 cycles of denaturation at 94℃ for 30 seconds, annealing at 60℃ for 45 seconds, extension at 

72℃ for 1 minute and final extension at 72℃ for 3 minutes with an infinite hold at 4℃.  

A bisulfite conversion was done on the DNA using Qiagen’s EpiTect Bisulfite Kit to 

determine if amplification was more successful before or after conversion. DNA from the same 

samples were used for both treatments. Manufacturer’s instructions were followed for the 

bisulfite conversion process. I found that the concentrations of DNA were higher in the samples 

that were PCR’d after bisulfite conversion.  
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This strategy was abandoned after it was realized that RRBS would be the better option. 

Though, not the cheaper option, RRBS provides more information about methylation patterns 

compared to individual amplicons.  

RRBS Methods 

 The typical genome size in Peromyscus leucopus is approximately 2.5 billion base pairs 

(Peromyscus leucopus Genome Assembly, 2020). RRBS sequences approximately 3-5% of the 

genome. This equates to approximately 75 million to 125 million base pairs of the genome. The 

Zymo-Seq RRBS Library Kit (Zymo Research, USA) was used to add indices, perform bisulfite 

reactions, and prepare the DNA for sequencing, following the manufacturer’s instructions. The 

indices added during library preparation allowed for sample identification in downstream 

analyses. Samples were sent to Kansas University Genome Core where Illumina sequencing was 

performed on the NovaSeq 6000 with a read length of 100 bp and paired-end reads.  

Bioinformatic Analyses 

 Quality Control and Adapter Removal – Four FastQ files per sample were received from 

KU Genomics Core. The samples were demultiplexed prior to making them available for 

download. The four files consisted of two lanes with reads one and two each, meaning there were 

forward and reverse reads per lane. These FastQ files were downloaded locally then placed onto 

Beocat (Beocat, 2021), a high-performance computing cluster at Kansas State University. An 

initial quality control check was performed on the FastQ files using FastQC prior to 

concatenating the lanes (FastQC, n.d.). Reads for each sample that passed the quality control 

check were concatenated (combined).   

Trimmomatic (Bolger et al., 2014) was then used to trim adaptors from the sequences; 

these adaptor prefixes were taken from the Zymo-Seq RRBS Library Kit and can be found in 
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Table 3. In addition to trimming, leading and trailing bases were removed as were reads below 

50 bp. The sliding window was 4 bases and cutting occurred when the average quality per base 

dropped below 15. Another FastQC check was performed on the sequences after trimming to 

ensure that all adapters had been removed.  

Methylation Calling – Bismark ( Krueger & Andrews, 2011) was then used to assemble 

the bisulfite converted genome and extract cytosine coverage. The genome preparation took 

place first using the Peromyscus leucopus (UCI_PerLeu_2.1, Oct. 2020) reference genome 

(Peromyscus leucopus Genome Assembly, 2020). Bismark created folders containing the 

converted genomes (C to T and G to A) that were then indexed using Bowtie2 (Langmead & 

Salzberg, 2012). After the Bismark alignment took place, the methylation extractor was used. 

This extracted the methylation from the files. A bedGraph report was then made in preparation 

for the final step. The final step was using coverage2cytosine to create CpG files that were 

compatible with R. All the CpG report files were zipped and then downloaded locally.  

RRBS Methylation Analysis in R Using methylKit – The methylKit package (Akalin et 

al., 2012) allows for downstream methylation analysis in R (R Core Team, 2023). The CpG 

report files from Bismark were converted to methylKit objects with the minimum coverage set to 

100 due to the coverage ranging from 1-~1700. 

All the samples were merged using the unite function. To ensure all the files had loaded 

properly, sapply with getCoverageStats was used. Files that did not contain enough sequencing 

information were removed (Table 4).  

A principal component analysis (PCA) was performed to reduce the dimensionality of the 

data and to visualize how the samples grouped together. The input was percent methylation 

profiles created by Bismark and the data matrix was formed using the samples and all of the 
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cytosines present in all of the samples. The first two principal components were plotted for each. 

These PCA plots were color-coded using different parameters from the sample metadata (e.g., 

tissue type, kk number, year, sex, county, etc.) and a convex was added to help visualize if and 

how samples were clustering, by connecting the plotted points for the different parameters.    

Differential methylation was initially calculated using the function calculateDiffMeth. 

Then, to get all differential methylation the function getMethylDiff was used. In order to view 

differentially methylated regions associated with genes and CpG islands, annotation files in BED 

format were downloaded from the UCSC genome browser (UCSC Genome Browser, n.d.). The 

following settings were used for gene annotation: selection from group was “Genes and Gene 

Predictions” and for CpG island annotation the group was “Expression and Regulation”, and the 

track was “CpG Islands.” The function annotateWithGeneParts from the R package genomation 

(Akalin et al., 2015) was used to show target features that overlap with annotations including 

promoters, exons, introns, and intergenic regions. To annotate CpG islands, the function 

readFeatureFlank was used with the flanking regions named “shores” and the CpG islands 

named “CpGi.” The percentage of each annotation type was then plotted using pie graphs.  

Percent Methylation – For all the samples, CpG percent methylation was extracted from 

the Bismark files. In addition to CpG islands, methylation can come from an adenine, thymine, 

or cytosine, which is denoted by CHG and CHH (Jin et al., 2011). Total percent methylation was 

calculated by adding the total number of methylated Cs in CpG context, total number of 

methylated Cs in CHG context, and total number of methylated Cs in CHH context and then 

dividing that number by the total number of Cs analyzed. All the CpGs, CHGs, and CHHs were 

provided in the Bismark files. To compare tissue type and percent methylation, boxplots were 

created for CpG percent methylation and total percent methylation using the ggplot2 package 
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(Wickham et al., 2023). For all the samples a “treatment” was created. This treatment showed the 

year and/or tissue being analyzed.  

A Kruskal Wallis test was performed on CpG percent methylation and tissue type and 

total percent methylation and tissue type for all the samples. This was to determine if the percent 

methylation and tissue type had an interaction. A Kruskal Wallis test was performed because 

Shapiro-Wilk’s test showed the data was not normally distributed (Table 5A). Following the 

Kruskal Wallis test, a Tukey’s test was performed for both CpG and total percent methylation 

against tissue type using the package nparcomp (Konietschke et al., 2019). A Tukey’s test was 

not reported for CpG and total percent methylation and tissue type with years because there were 

too many interactions to analyze.  

To test whether storage medium influenced methylation patterns, a two-way analysis of 

variance test (ANOVA) was conducted for samples based on CpG percent methylation and total 

percent methylation. First, the samples had to be split into four categories. Muscle with ethanol, 

muscle without ethanol, liver with ethanol, and liver without ethanol. Then, the Shapiro-Wilk’s 

test was performed on each of the categories to test for normality within the samples. Levene’s 

test was used to test for equal variances within the samples (Table 5B). They both showed 

normal distribution and variances. Descriptive statistics were used to create barplots for each 

group using the barplot function from the package gplots (Warnes et al., 2022). Finally, the two-

way ANOVA test was performed to determine if the samples were statistically significant from 

each other using a 0.05 significance level. 

RESULTS 

This study examined a total of 88 samples; of these, 81 samples were successfully 

sequenced and met quality control thresholds. Table 4 summarizes the sequences removed and 
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retained as well as the number of cytosines (Cs) analyzed. The number of Cs analyzed was only 

weakly correlated with CpG percent methylation (Figure 2A) and total percent methylation 

(which included CHH and CHG; Figure 2B), which indicated that sequencing coverage did not 

bias the results. The samples preserved without ethanol were excluded from analyses where all 

the samples were examined; they were only analyzed when addressing preservation.  

Differential Methylation – Differential methylation was mapped to annotated regions of 

the genome to determine where in gene regions methylation occurred. CpG percent methylation 

annotation shows 56% mapping to CpG islands and 44% mapping to other regions (Figure 3A). 

Differential methylation annotation for different regions of the genome shows 33% mapping to 

promoters, 44% mapping to intergenic regions, 22% mapping to introns, and 0% mapping to 

exons (Figure 3B).    

Percent Methylation – CpG and total percent methylation were compared to determine if 

these differed by tissue type and year (Figure 4). There were significant differences between 

tissue types when tissues from each year were analyzed together for both CpG percent 

methylation and total percent methylation (Figures 4A and Figure 4B and Table 6A). Liver and 

muscle had significantly higher CpG percent methylation based on a Tukey test (Table 7). For 

total percent methylation (Figure 4D), liver was significantly more methylated than the other 

tissues, but there were no differences in percent methylation among bone, liver, or skin based on 

a Tukey test (Table 7).  

There was more variation for CpG percent methylation than there was for total percent 

methylation as indicated by the shape and location of the boxes in Figures 4C and Figure 4D, but 

Kruskal-Wallis tests indicated there were significant differences for both (Table 6B). Liver and 

muscle tissues collected in 2008 had the highest CpG percent methylation (medians near 40%) 
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while skin from 2008 specimens had the lowest CpG percent methylation (medians near 20%; 

Figure 4C). This trend was also observed for total percent methylation, but the medians were 

lower, near 10% for 2008 liver and muscle and 5% for skin. 

What factor influences clustering on a PCA? – The first two components of the PCA for 

all the samples (except no ethanol) analyzed together accounted for 82.32% of the variation 

(Figure 5). To visualize if and how samples clustered, points and ellipses were color-coded based 

on sample characteristics. Points that cluster together are more similar to each other compared to 

points more distant in principal component space. Clustering was most apparent when samples 

were color-coded by individual sample (KK number). However, there was much overlap 

between many of the individuals (Figure 5A). 

Clustering was absent or less apparent when other sample characteristics were 

highlighted. When samples were colored by tissue type, all the ellipses overlapped (Figure 5B). 

Similarly, complete overlap was also observed when samples were color-coded by sex (Figure 

5C). Males have a much larger ellipse than the females as there were more males sampled than 

females. When points and ellipses were color-coded by year, there was again overlap and no 

discernable clustering (Figure 5D). Clustering was not observed when color-coded by germ 

layers (i.e., endoderm, mesoderm, and ectoderm; Figure 5E). There was also no clustering when 

grouping internal organ sequences separately from bone and skins (Figure 5F). Additionally, 

when county was color-coded, there was overlap and no clustering (Figure 5G). When individual 

was color-coded and tissue types were given different symbol shapes, the tissue types were not 

close to each other in principal component space, nor did individuals have similar relative 

locations of tissues (Figure 5H), meaning that across individuals, bone for example, did not fall 
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in the same location of each ellipse. Individuals collected in the same year were found across 

principal components space, indicating that year did not affect methylation patterns (Figure 5I).  

In order to more easily visualize variation in epigenetic methylation within and among 

individuals, PCAs were run separately for individuals collected from each year sampled. The 

first two components of the PCAs for the 2022 samples accounted for 69.35% of the variation 

(Figure 6). Clustering by individual can be seen with some overlap between KK_3734 and 

KK_3738 and some overlap with KK_3735 and KK_3737 (Figure 6A). There was extensive 

overlap among samples when tissue type is color-coded (Figure 6B). When sex was examined, 

the male ellipse completely encompassed the female sample from 2022 (Figure 6C). All the 

samples from this year were from the same county, thus no PCA graph showing county was 

created.  

 The first two components of the PCAs for the 2018 samples accounted for 66.59% of the 

variation (Figure 7). There was clear clustering by individual with no overlap among individuals 

(Figure 7A). When tissue type was the focus, there was near complete overlap of tissue types 

with no clustering between the tissue types (Figure 7B). The sexes overlapped slightly (Figure 

7C), and when county is graphed, there was clustering (Figure 7D).  

The first two components of the PCAs for the 2014 samples accounted for 56.75% of the 

variation (Figure 8). Because there was not a full complement of tissues for each individual from 

this year, it was difficult to assess individual-based clustering and the graphs should be 

interpreted with caution. It appeared that there was some clustering with little overlap between 

KK_2927 and KK_2930 (Figure 8A). There were mostly liver tissues for this year which 

overlapped slightly on the toe pad samples (Figure 8B). The sexes overlapped with each other 

(Figure 8C). These samples all came from the same county, so no PCA was graphed.  
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The first two components of the PCAs for the 2008 samples accounted for 78.92% of the 

variation (Figure 9). There was some clustering by individual but extensive overlap between 

KK_2034 and KK_2035 and slight overlap with KK_2149, KK_2150, and KK_2034 (Figure 

9A). However, much more clustering was observed for individuals compared to tissue type 

(Figure 9B) and sex (Figure 9C), both of which exhibited extensive overlap. The samples from 

this year all came from the same county and therefore no PCA was created.  

Does preservation method influence methylation patterns? To determine whether 

preservation method influenced methylation patterns, a PCA for ethanol versus no ethanol can be 

seen in Figure 10. The first two components of the PCAs accounted for 70.19% of the variation 

(Figure 10). There was clear clustering happening by individuals, as observed in the other 

samples (Figure 10A), but not by tissue type (Figure 10B) or sex (Figure 10C). Most 

importantly, there was extensive overlap between tissues preserved in ethanol versus no ethanol 

(Figure 10D).  

The results of the two-way ANOVAs indicated there were no significant differences in 

CpG percent methylation and total percent methylation between groups that were individually 

analyzed (i.e., ethanol and tissue type: Table 8; Figure 11). The two-way ANOVA did show a 

significant difference in CpG percent methylation when the interaction was tested between 

ethanol and tissue type (Table 8).  

Total percent methylation was also analyzed using the same four categories. The Shapiro-

Wilk’s and Levene’s test showed that all were above the significance level (0.05; Table 5B). 

This showed normality and variance within the samples. The bar plot for the means and standard 

deviation shows almost the same percent methylation between the different treatments (Figure 
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11B). The two-way ANOVA test showed no significant difference in the percent methylation 

levels between ethanol and no ethanol, tissue type, and their interaction (Table 8).  

DISCUSSION 

 This study is among the first to examine whether time since collection, tissue type, and 

preservation method influence methylation patterns in a non-model mammal. I found that 

samples from the same specimen clustered most strongly and did not cluster by tissue type, time 

since collection, sex, or any other metric for which metadata were available. More evidence of 

this trend can be seen when percent methylation levels were examined per tissue type in that 

there was no difference in the percent methylation levels. These findings were different from my 

initial prediction, based on previous studies, that samples would cluster by tissue. Additionally, 

preservation method also did not influence methylation patterns. This means ethanol as a 

preservative has no effect on methylation levels.   

 There are several possible explanations for why the samples clustered by individual. As 

mentioned earlier, stress is hypothesized to affect methylation patterns (Murgatroyd et al., 2009). 

An individual’s stress levels could influence how much methylation is present in the tissues. 

Individuals are exposed to differing stress levels due to many environmental factors beyond the 

control of researchers using museum specimens. Such environmental stressors could include 

drought, temperatures, and food/resource availability. Other studies have found that 

anthropogenic disturbance, resource availability, and early life stress, including level of maternal 

care and maternal rank, can influence methylation patterns for an individual animal (Francis & 

Meaney, 1999; Laubach et al., 2019; Murgatroyd et al., 2009), although it is unknown how long 

these methylation patterns persist within an individual or whether tissues within an individual 
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become differentially methylated. The present study suggests this must be the case, but more 

research on controlled populations would be needed to confirm this supposition.   

 Another explanation for clustering of methylation patterns by individual is that this 

phenomenon is unique to mammal museum specimens. This might be a possible explanation, but 

until more studies are done, we cannot know this yet. Previous studies in humans have found 

differences in methylation patterns between tissues (Fan & Zhang, 2009; Lokk et al., 2014). The 

Lokk et al. study found a difference in methylation patterns between 17 somatic tissues and the 

Fan & Zhang study found methylation profiles being similar between 11 somatic tissues. 

Humans are model organisms; therefore, these studies should be examined with caution when 

comparing them to a non-model organism because we don’t know how methylation patterns for 

model organisms and non-model organisms compare. This reinforces my assertion that more 

studies need to be done on other mammalian museum specimens to see how these conflicting 

studies compare to other species.  

 CpG islands are typically found in promoter regions but can be found in other regions of 

the genome as well (Blackledge & Klose, 2011). RRBS sequencing can be biased towards 

promoters since so many CpG islands are associated with them (Lim et al., 2019). In this study, I 

found that there was little bias towards promoters, which was unexpected. There was, however, a 

higher amount of CpG islands found in intergenic regions. Intergenic regions are regions that are 

distally located to genes, meaning they are between genes (Cain et al., 2022). It is unclear why 

there is a bias towards intergenic regions when most studies find a higher number of CpG islands 

in promoter regions (Hughes et al., 2020). A possible explanation for this is that there were not 

distinct distinguishing features when the genome was previously annotated for promoters and 

intergenic regions.    
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 In keeping with the other Peromyscus study (Rubi et al., 2020), this study found no 

evidence for consistent changes in methylation patterns based on time since collection. 

Methylation patterns for this study were consistent and sufficient data was still obtained for the 

samples from 2008. Methylation patterns did not cluster by year, but by individual. This study, 

like the previous Peromyscus study, was successful in extracting DNA and bisulfite converting 

the DNA in museum specimens.  

 It is important that the samples cluster by individual specimens because that means that 

cytosine methylation studies should not be influenced by which tissue type is chosen. Each tissue 

type will be representative of the methylation patterns of the individual. Though researchers 

should attempt to use the same tissue types within an experiment to reduce variability, this study 

shows that the tissue type chosen matters less than the individual does. During specimen 

preparation, it is typical to take several organs (e.g., liver, muscle, and heart), dry out the skin, 

and clean the skull. However, this limits the number of studies that can be done on different 

tissue types. It is often limited to which tissues the preparator decided to take at the time of 

preparation. This study demonstrates that high quality DNA can be extracted from all of these 

tissues. However, some consistency in preserving different tissue types is valuable. Some of my 

samples did not have tissues available because the preparator did not take them. This limits the 

number of tissues that can be studied in museum specimens and limited some of the comparisons 

I was able to make.  

 There were several limitations of this study. First, RRBS only represents a portion of the 

genome; it is possible that the methylation patterns differed in parts of the genome that were not 

represented in the segments that were sequenced. Whole genome bisulfite sequencing could have 
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alleviated this issue and provided the whole view of genome wide methylation; however, this 

technique was not used due to budget constraints.  

Another limitation was that some samples did not have sufficient sequencing data for 

analysis. Although I am confident in the results presented, had those samples worked, several of 

the PCA graphs would have had the full complement of four points per individual.  

Additionally, the specimens collected in 2014 and 2018 only had liver tissues collected at 

the time they were prepared, but not muscle. Ideally all the tissues would have been consistent 

across all time points. It would have also been ideal that all the specimens came from the same 

sex and county. These could have influenced the results, although this is doubtful given the 

extensive overlap among the samples. The exception is the samples from 2018, which clustered 

by individual and by county. Although it is impossible to know with certainty why this is the 

case, it is possible that the individuals from the different counties experienced different 

environmental stress regimes as discussed above.  

 A future direction of this research could be to create an epigenetic clock. This “clock” 

can be used to predict the age of an individual, although such clocks can vary between 

individuals. Aging is a naturally occurring process characterized by the accumulation of cellular 

damage over time, which can be regulated by chemical changes such as methylation. Thus, an 

epigenetic clock, using CpG islands as indicators, has been created for humans and other animals 

that can predict the actual age of an individual (De Paoli-Iseppi et al., 2017; Robeck et al., 2023; 

Wright et al., 2018; J. Zhang et al., 2021). Different types of tissues can age differently which is 

why multiple tissues are needed to create the clock. Despite this being a promising future 

direction of the study, “ground-truthing” is necessary, meaning individuals of known ages are 

needed. This limits its utility for wild-caught specimens, particularly if no morphological 
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features, like tooth wear, are available to determine an individual’s age; it is currently impossible 

to age P. leucopus using such means.  

In the future, I suggest performing whole genome bisulfite sequencing on the samples to 

see if they still cluster by individual specimens; I hypothesize that they still will. Though RRBS 

is only a portion of the genome its purpose is to still represent the genome. This is why I 

hypothesize that in museum specimens clustering by individual will still be seen when whole 

genome bisulfite sequencing is used.  

More research in the future should be done to see if this study holds up in other 

mammals; particularly those in museum specimens. Since there has been a growing amount of 

research in museum specimens, it is important to see how this study, finding that there was 

clustering by individual, holds up in other mammals. This study goes back to 2008 and it is 

known that in bone methylation patterns hold up for at least 76 years (Rubi et al., 2020). So, it 

would be interesting to see how much further into the past methylation patterns are maintained in 

tissues, particularly those preserved in ethanol. 

Finally, future studies should examine gene ontology. Gene ontology (GO) is the process 

of describing gene products and their functions (Ashburner et al., 2000). GO analysis or 

annotation provides a picture of how methylation patterns can influence gene expression. By 

using GO analysis for methylation patterns, gene products and their functions associated with 

CpG islands can be investigated. There are several programs that will take an input of locations 

and output a list of known gene associations and their functions (Kolberg et al., 2023; 

Maksimovic et al., 2021). This can tell us the locations of what is being methylated and how it is 

correlated with functions or phenotypes within an individual.   
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This study is important because it addresses a knowledge gap in wildlife epigenetics. 

Since there was no variation in methylation patterns across tissue types, future researchers may 

choose whatever available tissue type best suits their research question. Additionally, it is very 

important that no variation in methylation patterns was found between ethanol versus no ethanol 

samples. This means that methylation holds up (at the very least) since 2008, and I suspect 

further, in tissues preserved in ethanol. Again, the importance of this is the key to future 

methylation studies being done on museum specimens. Museums preserve a wealth of biological 

specimens collected across vast temporal and spatial scales; this study shows that if a researcher 

should want to use them to examine things like the influence of climate change or range 

expansion on methylation, they should be able to regardless of the deposition of the specimen.   
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TABLES 

Table 1: Specimens 

Tissue (KK) number, Sternberg Natural History Museum (FHSM) specimen accession number, 

collection year, collection county, and sex for specimens used in this study. The tissue types used 

from each specimen are indicated by “X” in the corresponding column. Specimens from 2022 will 

be given an FHSM number when they are cataloged into the collection. 

KK FHSM Year County Sex Muscle Liver Skin Skull 

2032 41623 2008 Russell M X X X X 

2033 41624 2008 Russell M X X X X 

2034 41625 2008 Russell M X X X X 

2035 41626 2008 Russell F X X X X 

2149 41693 2008 Ellis F X X X X 

2150 39006 2008 Ellis F X X X X 

2700 42351 2014 Ellis F  X X X 

2886 42753 2014 Ellis F  X X X 

2892 42635 2014 Ellis M  X X  

2915 42394 2014 Ellis M  X X X 

2927 42386 2014 Ellis F  X X  

2930 42419 2014 Ellis M  X X X 

3572 43350 2018 Barton M  X  X 

3573 43430 2018 Barton M  X  X 

3574 43302 2018 Barton F  X  X 

3602 43293 2018 Russell M  X X X 

3619 43317 2018 Ellis F  X X X 

3669 43309 2018 Russell F  X X X 

3734  2022 Ellis M X X X X 

3737  2022 Ellis F X X X X 

3735  2022 Ellis M X X X X 

3738  2022 Ellis M X X X X 

3740  2022 Ellis M X X X X 

3744  2022 Ellis M X X X X 
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Table 2: Primers 

Primer sets with their respective primer sequences, locations, and number of CpG sites. 

Gene/Primer 

Name 

Location 

from NCBI 

# CpG Sites LEFT Sequence RIGHT Sequence 

Kcnn2 Chr19 11 CATGCCCATTGTTTTGGTG GCAATGCAGGTGTGAGGAG 

Mafb Chr4 12 CAGCAGAAACATCACCTGGA ACACAGGACAGGGAGTCTGG 

Nav1 Chr15 9 GGGCCAGCTTACCAACATAG GTAGGTGGAAGAGGCACTGG 

Pax6 Chr4 6 GTCCATCTTTGCTTGGGAAA CTTGTGTAGGTTGCCCTGGT 

Pura Chr19 13 CGACTTCATCGAGCACTACG GAACTCGATGAGCCCCTGT 

Taok3 Chr23 14 TGTCAGGTTACAAGCGGATG GCTACCTTCGCCTCCTTTTC 

 

Table 3: Prefixes 

Prefixes and their reverse compliments use in the TrueSeq3-PE file for Trimmomatic.  

 
prefix prefix rc 

1 AGATCGGAAGAGCACACGTCTGAACTCCAGTCA  TGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

2 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT  ACACTCTTTCCCTACACGACGCTCTTCCGATCT 

 

Table 4: Identifying Names 

The identifying name used for analysis along with the total number of samples that were 

analyzed and the total number of samples that were not analyzed. The Table also shows the 

number of cytosines (Cs) analyzed.  

Identifying Name Removed Number 

of Cs 

Analyzed 

2008_M_2032 
 

13306924 

2008_M_2033 
 

21290700 

2008_M_2034 
 

20599086 

2008_M_2035 
 

16496326 

2008_M_2149 
 

17555093 

2008_M_2150 
 

24649693 

2008_L_2032 
 

37067783 

2008_L_2033 
 

16593482 

2008_L_2034 
 

9400509 

2008_L_2035 
 

16185477 

2008_L_2149 
 

16525249 

2008_L_2150 
 

27418384 
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2008_T_2032 
 

17762051 

2008_T_2033 
 

20120488 

2008_T_2034 
 

20474504 

2008_T_2035 
 

16405168 

2008_T_2149 
 

17031508 

2008_T_2150 
 

26075619 

2014_T_2915 
 

37437061 

2014_T_2927 
 

14690353 

2014_T_2930 
 

33603368 

2018_T_3602 
 

27733966 

2018_T_3619 
 

25287257 

2018_T_3669 
 

12043702 

2014_L_2700 
 

8916039 

2014_L_2886 
 

26705698 

2014_L_2892 
 

29408135 

2014_L_2915 
 

10246228 

2014_L_2927 
 

22529771 

2014_L_2930 
 

27020889 

2018_L_3572 
 

24567425 

2018_L_3573 
 

38028984 

2018_L_3574 
 

27074670 

2018_L_3602 
 

27638531 

2018_L_3619 
 

33128556 

2018_L_3669 
 

28101791 

2008_B_2032 
 

26819697 

2008_B_2033 
 

32361339 

2008_B_2034 
 

19394991 

2008_B_2035 
 

13361178 

2008_B_2149 
 

34775201 

2008_B_2150 
 

27900244 

2018_B_3572 
 

19463704 

2018_B_3573 
 

12266448 

2018_B_3574 
 

21603987 

2018_B_3602 
 

12295243 

2018_B_3619 
 

25625051 

2018_B_3669 
 

11186709 

2014_B_2700 x 390766 

2014_B_2886 
 

30304916 

2014_B_2915 x 18700 

2014_B_2930 x 48731 

2022_T_3744 
 

36552432 

2022_T_3738 
 

41993431 

2022_T_3740 x 77 
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2022_T_3734 
 

25986146 

2022_T_3735 
 

25873740 

2022_T_3737 x 1048998 

2022_M_3744_NE 
 

33150014 

2022_M_3738_NE 
 

24957785 

2022_M_3740_NE 
 

32975115 

2022_M_3734_NE 
 

22630623 

2022_M_3735_NE 
 

10250926 

2022_M_3737_NE 
 

20822887 

2022_L_3744_NE 
 

33268011 

2022_L_3738_NE 
 

19015113 

2022_L_3740_NE 
 

28510003 

2022_L_3734_NE 
 

23820629 

2022_L_3735_NE 
 

31945302 

2022_L_3737_NE x 42688087 

2022_M_3744 
 

10305850 

2022_M_3738 
 

24424716 

2022_M_3740 
 

35809005 

2022_M_3734 
 

35651758 

2022_M_3735 
 

12914937 

2022_M_3737 
 

39319528 

2022_L_3744 
 

33211339 

2022_L_3738 
 

25726140 

2022_L_3740 
 

25143822 

2022_L_3734 
 

40290828 

2022_L_3735 
 

23910502 

2022_L_3737 x 815848 

2022_B_3744 
 

32811991 

2022_B_3738 
 

23500078 

2022_B_3740 
 

40078459 

2022_B_3734 
 

22127574 

2022_B_3735 
 

22296322 

2022_B_3737 
 

22353204 

total number of 

samples analyzed 

81 

 

total number of 

samples not analyzed 

7 

 

 

Table 5: Shapiro-Wilk's Test and Levene's Test 
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A) CpG percent methylation and total percent methylation with p-values for Shapiro-Wilk’s test 

for all the samples. B) CpG percent methylation and total percent methylation with p-values and 

descriptive statistics for ethanol vs no ethanol.  

A) 

CpG Percent Methylation 

Shapiro-Wilk's Test  
W p-value 

muscle 0.86495 0.0147 

liver 0.93676 0.0825 

bone 0.78174 0.000628 

toe pads 0.96043 0.6697 

Total Percent Methylation 

   
Shapiro-Wilk's Test  

W p-value 

muscle 0.70456 9.03E-05 

liver 0.88703 0.004859 

bone 0.84304 0.005179 

toe pads 0.9865 0.995 

 

B) 

CpG Percent Methylation 

Shapiro-Wilk's Test  
W p-value 

 

muscle ethanol 0.93195 0.5953 
 

muscle no ethanol 0.96355 0.8467 
 

liver ethanol 0.85257 0.2028 
 

liver no ethanol 0.83932 0.1631 
 

Levene's Test  
F value pr(>F) 

 

all 1.5633 0.2329 
 

Descriptive Statistics  
N Means SD 

muscle ethanol 6 33.68333 3.611879 

muscle no ethanol 6 30.86667 0.553775 

liver ethanol 5 29.42 2.901207 

liver no ethanol 5 37.08 4.543347 

Total Percent Methylation 
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Shapiro-Wilk's Test  
W p-value 

 

muscle ethanol 0.84863 0.1534 
 

muscle no ethanol 0.81857 0.08577 
 

liver ethanol 0.85378 0.2068 
 

liver no ethanol 0.83325 0.1471 
 

Levene's Test  
F value pr(>F) 

 

all 2.3471 0.1069 
 

Descriptive Statistics  
N Means SD 

muscle ethanol 6 11.10683 4.049555 

muscle no ethanol 6 9.519835 1.430796 

liver ethanol 5 8.215543 0.546005 

liver no ethanol 5 9.082652 0.919285 

 

 

Table 6: Kruskal Wallis 

A) Test for CpG and total percent methylation against tissue type. The significance level was 

0.05. Both CpG and total percent methylation have a p-value below the significance level. B) 

Test for CpG and total percent methylation against tissue types/years. The significance level was 

0.05. Both CpG and total percent methylation have a p-value below the significance level. 

A) 

CpG Percent Methylation and Tissue Type 

Kruskal Wallis 

chi-squared df p-value 

20.92 3 0.0001094 

Total Percent Methylation and Tissue Type  
Kruskal Wallis 

chi-squared df p-value 

20.226 3 0.0001524 
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B) 

CpG Percent Methylation and Tissues/Years 

Kruskal Wallis 

chi-squared df p-value 

53.698 13 6.83E-07 

Total Percent Methylation and Tissues/Years  
Kruskal Wallis 

chi-squared df p-value 

42.244 13 5.97E-05 

 

Table 7: Tukey Test Results 

Tukey results for CpG and total percent methylation against tissue type. The significance level 

was 0.05. CpG Percent Methylation and Tissue Type) B-M and M-T showed a significant 

difference. Total Percent Methylation and Tissue Type) B-M, L-M, M-T showed a significant 

difference.  

CpG Percent Methylation and Tissue Type 

Tukey 

comparison statistic p-value 

B-L 2.4236517 0.0752894 

B-M 3.2676512 0.005859554 

B-T -0.5664705 0.972214131 

L-M 1.6613754 0.365515258 

L-T -2.5488375 0.053580971 

M-T -3.4059656 0.003681426 

Total Percent Methylation and Tissue Type  
Tukey 

comparison statistic p-value 

B-L 0.3686877 0.994613545 

B-M 3.0929932 0.009084398 

B-T -1.6602611 0.36428277 

L-M 2.7631676 0.029814172 

L-T -2.2447917 0.116737965 

M-T -3.9990185 0.000247006 

 

Table 8: Two-Way ANOVA 



 

 

31 

 

Two-way ANOVA results for both CpG percent methylation and total percent methylation.   

CpG Percent Methylation 

ANOVA  
Df Sum 

Sq 

Mean 

Sq 

F 

value 

Pr(>F) 

Ethanol$Ethanol 1 20.82 20.82 2048 0.16959 

Ethanol$Tissue_Type 1 5.19 5.19 0.51 0.48429 

Ethanol$Ethanol: 

Ethanol$Tissue_Type 

1 149.67 149.67 14.722 0.00121 

Residuals 18 183 10.17 
  

Total Percent Methylation 

ANOVA  
Df Sum 

Sq 

Mean 

Sq 

F 

value 

Pr(>F) 

Ethanol$Ethanol 1 1.22 1.223 0.227 0.639 

Ethanol$Tissue_Type 1 15.11 15.107 2.809 0.111 

Ethanol$Ethanol: 

Ethanol$Tissue_Type 

1 8.21 8.213 1.527 0.232 

Residuals 18 96.8 5.378 
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FIGURES 

Figure 1: Predictions 

Predictions of outcomes for this study for a PCA. Each dot represents an individual and a tissue type. Upper Left) Clustering by tissue 

type. Lower Left) Internal organs are similar i.e., muscle and liver cluster together separately from bone and skull. Upper Right) Two 

outcomes for the study being by year or individuals. Clustering by year would be four separate groups and for a given year individual 

clustering would have six groups. Lower Right) Ethanol versus no ethanol study. Ethanol clusters independently of no ethanol. 
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Figure 2: Linear Regression Plots 

A) CpG percent methylation graphed against total number of Cs analyzed. B) Total percent methylation graphed against total number 

of Cs analyzed.  
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A)  
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B)  
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Figure 3: Pie Charts 

Differential methylation annotation. A) Differential CpG methylation annotation B) Differential methylation annotation for different 

regions in the genome 



 

 

37 

 

A)  
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B)  

 



 

 

39 

 

Figure 4: Percent Methylation Boxplots 

A) CpG Percent Methylation according to tissue type and year B) Total Percent Methylation according to tissue type and year C) CpG 

percent methylation according to tissue type. D) Total percent methylation according to tissue type 
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Figure 5: PCA All Samples 

Plot of principal components (PC) 1 and 2 for all samples: A) Samples and ellipses color-coded by individual (KK number). B) 

Samples and ellipses color-coded by tissue type: B = bone, L = liver, M = muscle, T = toe pads C) Samples and ellipses color-coded 

by sex. D) Samples and ellipses color-coded by year. E) Samples with ellipses color-coded by germ layers. F) Samples with ellipses 

color-coded by internal organs. B = bone, I= internal organs (muscle and liver), and T = toe pads G) Samples and ellipses color-coded 

by county. H) Samples and ellipses color coded by KK number and symbols as tissue type. I) Samples and ellipses color-coded by KK 

number and symbols as year.  
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Figure 6: PCA 2022 

Plot of principal components (PC) 1 and 2 for samples collected in 2022: A) Samples and ellipses color-coded by KK number. B) 

Samples and ellipses color-coded by tissue type: B = bone, L = liver, M = muscle, T = toe pads C) Samples and ellipses color-coded by 

sex. D) Samples and ellipses color-coded by county.  
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Figure 7: PCA 2018 

Plot of principal component (PC) 1 and 2 for samples collected in 2018: A) Samples and ellipses color-coded by KK number. B) Samples 

and ellipses color-coded by tissue type: B = bone, L = liver, T = toe pads C) Samples and ellipses color-coded by sex. D) Samples and 

ellipses color-coded by county.  



 

 

59 

 

A)  



 

 

60 

 

B)  



 

 

61 

 

C)  



 

 

62 

 

D)  

 



 

 

63 

 

Figure 8: PCA 2014 

Plot of principal component (PC) 1 and 2 from samples collected in 2014: A) Samples and ellipses color-coded by KK number. B) 

Samples and ellipses color-coded by tissue type: B = bone, L = liver, T = toe pads C) Samples and ellipses color-coded by sex.  
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Figure 9: PCA 2008 

Plot of principal component (PC) 1 and 2 from samples collected in 2008: A) Samples and ellipses color-coded by KK number. B) 

Samples and ellipses color-coded by tissue type: B = bone, L = liver, M = muscle, T = toe pads C) Samples and ellipses color-coded by 

sex. D) Samples and ellipses color-coded by county. 
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Figure 10: PCA Ethanol vs No Ethanol 

Plot of principal component (PC) 1 and 2 from samples collected in 2022 for ethanol versus no ethanol: A) Samples and ellipses color-

coded by KK number. B) Samples and ellipses color-coded by tissue type: L = liver, M = muscle C) Samples and ellipses color-coded 

by sex. D) Samples and ellipses color-coded by ethanol or no ethanol. 
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Figure 11: Bar Plots 

CpG percent Methylation and Total Percent Methylation. Liver with ethanol = L_E, liver without ethanol = L_NE, muscle with 

ethanol = M_E, muscle with no ethanol = M_NE A) CpG Percent Methylation B) Total Percent Methylation  
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