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ABSTRACT

The East Coast of the United States could be susceptible to tsunamis or even mega tsunamis.
With this in mind it becomes essential to answer the question: Where is vulnerability to a
tsunami greatest along the East Coast of the United States? To answer this question the following
parameters have been set. First, the study will include county level subdivisions along the USEC
that have coasts along the Atlantic Ocean. The possible source regions of a tsunami or mega
tsunami are also noted. This analysis includes both social and physical factors with nine and five
of them considered respectively. Three separate methods were created with these datasets to see
the variance of the analysis based on changes in methods. The results show how impactful cities
are in determining vulnerability due to the concentration of different peoples. There is much that
can be gleaned by taking a deeper look into these analyses, especially when comparing which
methodologies are most effective and for what situations they are useful for. This study
highlights the need for additional research into the topic and more importantly increased

awareness of policy makers towards preparing for these disasters.
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INTRODUCTION

Tsunamis are one of the most devastating natural hazards. Due to their unpredictability,
large destructive potential, and the propensity of humans to build along coasts, tsunamis will
continue to threaten people across the globe. This includes areas that have never experienced nor
feared tsunamis. The East coast of the United States is one such area as there are no documented
tsunamis to have occurred there in recorded history, which has led the population of the coast to
not perceive them as a threat. While the risk may be low, it is not zero and for this reason the
threat should be accounted for. As such, a framework for locating areas that have the highest

vulnerability to a potential mega tsunami along the coast warranted for the area.

The question raised in this thesis is: Where is vulnerability to a tsunami greatest along the
east coast of the United States? A vulnerability analysis of the east coast will help identify where
more resources would need to be allocated in order to provide the best relief efforts in case of a
mega tsunami. County level subdivisions are useful in this regard as they are large enough to be
individually important while still being small enough to show the variance of vulnerability along
the coast. The findings of this study show the dominance of cities when assessing vulnerability
due to them not only being densely populated, but also being built on generally flatter areas that
would allow tsunami run-up to be higher. Due to the nature of hydrological disasters and
coastlines, this vulnerability map will also be useful in case of hurricanes and other water-related
disasters. Studies of this kind provide information to decision makers to take seriously the threat

and to create mitigation and evacuation plans.

In order to create an acceptable vulnerability analysis there are pieces of information that

must be understood. The study area and the counties included must be made known. Tsunamis

1



and mega tsunamis need to be understood as disasters in both how they are caused and the kind
of destruction they leave in their wake. Why vulnerability is important and what it means is of
paramount importance in order to grasp the findings of the analysis. The obtainment of data and
the rationale behind why all the data were used helps when interpreting results. Three methods
are used in order to find the vulnerability of each county and to document variance across the
methods. This study gives credence to the fact that cities are almost exclusively the most
vulnerable areas to disaster for a variety of reasons. It also shows that the more physically

vulnerable areas may become increasingly vulnerable depending on the movement of people.

Study Area

The study area includes 129 counties and cities along the United States East Coast
(USEC; Figure 1). The counties included in the study are only those with a direct coastline with
the Atlantic Ocean and smaller bodies of water connected directly to it (e.g., Chesapeake Bay
and Albemarle Sound). These counties are part of 14 separate states which include: Connecticut,
Delaware, Florida, Georgia, Maine, Maryland, Massachusetts, North Carolina, New Hampshire,
New Jersey, New York, Rhode Island, South Carolina, and Virginia. Some cities and counties
that are near but not in contact with the coast are not included in this study. This includes cities
such as Washington DC and Philadelphia, PA. Due to them being near the mouth of the Potomac
and Delaware rivers respectively they are often considered coastal cities. But for the purposes of

this study, they are not included as they have no direct coastline with the ocean or its features.
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BACKGROUND AND LITERATURE REVIEW

What is a tsunami?

Tsunamis are a series of waves caused by submarine displacement of water, usually by
earthquakes (Prothero, 2011). They vary in size and destructive capacity based on a multitude of
factors. The most basic factor to consider when it comes to tsunami size and intensity is the
cause of the tsunami (Prothero, 2011). The simplest terms to describe earthquake-generated
tsunamis is that a sudden release of energy between two of earth’s plates causes an earthquake
which in turn will have an influence on the water in which it occurs. The sudden shifting of the
plates displaces water that moves at incredible speeds away from the epicenter. Due to
momentum the tsunami can travel for thousands of miles across the open ocean; interestingly
tsunamis in the open ocean are often nearly undetectable as they tend to be small waves in open
water. However, as they near land, the water begins to be forced up due to the sea floor rising
which can cause the giant waves that tsunamis are best known for. Bathymetry and coastline
configuration can have drastic effects on what these tsunamis look like when they reach the
shore (Bletery et al., 2015). Perhaps the most infamous sign of an encroaching tsunami, outside
of the earthquake that causes it, is the receding of water from the shore immediately before it hits
(Robke & Vtt, 2017). Beaches can be completely cleared of water exposing the sea floor for
thousands of feet. This of course is just a portent of the coming disaster. These disasters have
been prevalent for humans throughout recorded history. Particularly because of their close
relationship to earthquakes, tsunamis have been documented for thousands of years. Two of the
most recent and most devastating natural disasters were tsunamis: 2004 Indonesian Tsunami and

2011 Fukushima tsunami. The first killed nearly a quarter of a million people while the latter is



one of the costliest disasters in the history of mankind (Rébke & Vétt, 2017). These earthquake-
induced tsunamis have a massive range due to the number of faults between oceanic and
continental plates which along with how unpredictable they are makes them a particularly

dangerous hazard.

Mega tsunamis

While most tsunamis are caused by submarine earthquakes, there are examples of what
are known as mega tsunamis which are caused by the sudden intrusion of material into a body of
water (Goff et al., 2014). They are called mega tsunamis because of having such a large amount
of mass fall into water. It is like throwing a rock into a pond: While the ripples will travel
throughout the pond, they will be largest right at the entry point. The same phenomenon occurs
with mega tsunamis but on a massive scale. There are two main ways that a mega tsunami can be
created. The more common type is created by landslides where the earth falls into the sea usually
due to volcanic eruptions. A famous example of this is the 1958 Lituya Bay mega tsunami where
the wave reached over 1000 feet high from the landslide (Fritz et al., 2009). Another example is
the mega tsunami that was cause when Krakatoa erupted in 1883 and caused a mega tsunami that
devastated the surrounding area (Gray & Monaghan, 2003). The less common creation method is
from extraterrestrial objects such as meteors or asteroids. The incredible speed at which they
impact the earth releases so much energy that theoretically the mega tsunami created from it
could reach miles high (Daukantas, 1998). The focus of this research is landslide created mega
tsunamis, but it is worth noting how devastating an impact mega tsunami could be. As noted, the
height of the water is much higher at the epicenter of these events but that is not to say that they

do not travel through open water. While the heights of the tsunamis will not be hundreds of feet



high in the far field, or area that is far away from the point of generation, they can still be larger

than many earthquake-induced tsunamis.

Why the USEC is at risk

Multiple different possible tsunamis could affect the East Coast from the Atlantic (Grilli
et al., 2014). These scenarios are not the only possible tsunami generation areas, but they are the
most prevalent due to their higher risk or larger size. The first two are from tectonically active
zone: The Puerto Rico trench and the Azores-Gibraltar Transform Faut (AGFZ). The Puerto Rico
fault line is seismically active and has had magnitude 6+ earthquakes consistently in recent years
(Grilli et al., 2014). Studies modelling possible inundation of the East Coast model a magnitude
nine which could cause a large tsunami (Grilli et al., 2014). Due to the location of the fault, it
would likely impact the south but is not the focus of this study. The AGFZ which caused the
1755 Lisbon tsunami (Barkan et al., 2009) is also a possible area for a tsunami to be created if a
large enough earthquake were to occur there. It could wreak havoc on the USEC but is by no
means a worst-case scenario for the region. Another widely discussed generation point would be
along the continental shelf if a large submarine landslide were to occur (ten Brink et al., 2009). It
is believed that a submarine landslide equal to a 7.0 magnitude earthquake is quite rare but
possible in the region (Grilli et al., 2014). Due to proximity this could prove devastating even
though the tsunami itself would be relatively small compared to others that could impact the
coast. The final widely studied and likely largest albeit most unlikely of the scenarios is a mega
tsunami generated by a complete flank collapse of Cumbre Vieja volcano in the Canary Islands
(Tehranirad et al., 2015). While the size of the collapse could vary wildly with the most likely

being 80 km3 and the largest being as high as 450 km3 it could devastate either way. The worst-



case scenario in this case is likely the largest tsunami the USEC could experience. Despite the
distance between the generation point and the USEC, the massive movement of material into the
ocean could create a mega tsunami of incredible scale (Paris et al., 2018). The Canary Islands
themselves would likely be completely devastated with parts of North Africa also having little
time to evacuate. The USEC would have between five and ten hours to evacuate after the initial
landslide. This is assuming that the landslide is effectively and immediately reported as it
happens and that the authorities of the area understand the risk that it poses. With that being said
the USEC has a large population and massive economy that would immediately be at risk should

one of these events occur.

What is vulnerability?

Understanding the East Coast’s susceptibility to tsunamis can help define the
vulnerability of the area. Vulnerability in the case of disaster can be defined as the ability of
people/environment to resist and recover from a disaster. How susceptible an area is to a disaster
is not simply a function of how likely an event is to occur in this area, but also how well the
people and environment can handle the event when it occurs. That is the main way it differs from
risk as risk is in its simplest form represents the likelihood of an event (Smith, 2013). Of course,
vulnerability is not static across all disaster or events as each one can have different variables
that make an area more or less vulnerable to the event. In the case of tsunamis, the configuration
of the coastline can impact how the water will run up while coastline configuration will have
little impact on a hurricane’s winds it is important in its impacts on storm surge. The USEC is
vulnerable in this case based on previously mentioned attributes: population, wealth, and

coastline. The counties along the Coast have a population of over 41 million people (Bureau,



2021). This large number in of itself speaks to the incredible vulnerability of the area. While a
tsunami would not inundate an entire county, it is still worth noting how many people are very
close to the coast on the Eastern Seaboard. Wealth or the economy of the region also would
prove to be a main area of concern in the case of a mega tsunami. The area is home to some of
the largest and wealthiest cities in the US with New York City alone having a GDP roughly the
size of Canada. This could in some case make it easier for many residents to evacuate but when
there is that amount of material goods then there is that much more to lose. As such there are
more than human lives at risk when it comes to disasters. Tsunamis are heavily influenced by the
land that they reach. Depending on the bathymetry of the coast a tsunami could be taller and
faster when it reaches a coast which will impact how far inland it might make it before waters
recede (Bletery et al., 2015). If there are large rivers, then they will also make it easier for a
tsunami to intrude further inland. This is to say that the USEC has many factors that make it
vulnerable to a tsunami based on its population, economy, and coast. Interestingly, what might
make the areas the most vulnerable is actually the fact that a tsunami has not happened there in
recorded history and as such the people do not understand the threat that they could pose to them.
While that is more difficult to quantify, increasing public awareness on the subject will help to

alleviate the impacts of such an event.

Tsunami vulnerability studies

Vulnerability is a well-known concept and as such there has been no shortage of
vulnerability analyses done for tsunamis and other coastal hazards (Barkan et al., 2009; Bletery
et al., 2015; Cutter et al., 2003; Febrina et al., 2020; GOTO & NAKASU, 2018; Grilli et al.,

2014; Grilli et al., 2017; Ismail et al., 2012; Murthy et al., 2011; Najihah et al., 2014; Papathoma



et al., 2003; Romer et al., 2012; Szlafsztein & Sterr, 2007; ten Brink et al., 2009). Tsunami
vulnerability according to guidelines set by UNESCO-IOC include social, physical,
environmental, and economic impacts as the main aspects of tsunami vulnerability (UNESCO

2009).

Studies of physical vulnerability

Physical vulnerability studies tend to focus on two main areas: modeling and remote
sensing/ GIS. Modelling of Tsunami generation and propagation has been done in many parts of
the world (Grilli et al., 2014; Grilli et al., 2017; Murthy et al., 2011). These forms of modelling
are useful for seeing where run-up could possibly be the highest, but it is not always possible for
them to take in some of the aspects that are important to vulnerability such as social impacts.
Remote sensing/ GIS based physical vulnerability tends to focus on other aspects due to the
nature of the analysis (Ismail et al., 2012; Najihah et al., 2014; Romer et al., 2012). These studies
include more human aspects and at times economic and environmental as well because they are
not only modelling the possible run-ups of tsunamis but instead how vulnerable an area is based

on their own preconceived tsunami extremes.

Studies of social vulnerability

Social vulnerability studies often include physical vulnerability as well. However, human
vulnerability also plays a greater role in mitigation as understanding populations that are
vulnerable allows for more focused efforts on population characteristics (Cutter et al., 2003;
GOTO & NAKASU, 2018). Social vulnerability studies also tend to be more multidisciplinary in

that they are not only applicable for tsunamis but for other coastal hazards as well.



Environmental and economic vulnerability

Environmental and economic impacts are also important aspects of vulnerability as seen
in the work done by Papathoma et al. (2003), who consider various aspects of buildings and how
vulnerable they may be. These two aspects are not the focus of my study, but some economic
data will be used to assess vulnerability. This is due to the large study area that does not allow
for assessment of small areas at a micro or local scale regarding economics. This fact is generally
why studies focusing on these aspects are of smaller scales as they can be better quantified at

these scales.
Differing scales of tsunami vulnerability

One point of interest where vulnerability is concerned is the problem of scale regarding
each aspect. Many tsunami vulnerability analyses rely heavily on building vulnerability at a
micro scale for vulnerability (Omira et al., 2009; Papathoma & Dominey-Howes, 2003). This is a
great way to see the vulnerability of the built environment but is of little help at the larger scale
of my study. Most tsunami vulnerability analyses of large scales fall into the modelling of
tsunami generation, propagation, and run up mentioned above. Other large-scale vulnerabilities
are almost entirely focused on physical aspects of the area and how that impacts vulnerability.
There is some limited focus on human vulnerability at large scales but usually in conjunction
with the physical vulnerability. This is the focus of my research as the physical and human
vulnerabilities are often the two most important factors of an area’s vulnerability to a tsunami
and as such more important for large scale analyses. In this regard the framework will be heavily
based on Szlafsztein and Sterr’s coastal vulnerability index or CVI (Szlafsztein & Sterr, 2007).

This study used a state in Brazil and brought together different aspects of vulnerability into a

10



single framework where they were weighted accordingly, and each region of the state was given
values based on this index. The variables used are mostly social and physical with some income
related economic issues also being used. It is of a large scale and the framework used for my

study is inspired by the framework of the CVI.
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DATA

Data collection and use

Data for both social and physical variables were obtained by different open-source
providers. Site links are included in the appendices, so the data are readily available. Physical
data were obtained from NALCMS for land cover data, GEBCO for bathymetric data, USGS for
elevation, US Census for county boundaries and coastline, and NOAA for shoreline data. Social
variables were obtained from the 2010 United States Census. Metadata for each data source is

provided in the appendix.

Land Cover Source Data

NALCMS land cover data are derived from Rapideye and Landsat imagery in a joint
effort from multiple agencies in North America. The file used for this study is the 2015 30m
resolution dataset which includes the entirety of North America. There are 19 defined classes in
these data derived from the Land Cover Classification System (LCCS). Agencies involved in the
creation of these data are: “Canada Centre for Mapping and Earth Observation (CCMEQ), the
United States Geological Survey (USGS), and three Mexican organizations: the National
Institute of Statistics and Geography (Instituto Nacional de Estadistica y Geografia—INEGI), the
National Commission for the Knowledge and Use of Biodiversity (Comision Nacional para el
Conocimiento y Uso de la Biodiversidad—Conabio), and the National Forestry Commission

(Comision Nacional Forestal—Conafor)” (NALCMS).
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Bathymetry Source Data

Bathymetric contour lines created by OpenDEM using the GEBCO grids are one of the
other physical data sources used in this study as well. In this case the GEBCO grid from 2021
was used but only the bathymetry grid. These data are in 15 arc second intervals and covers the
bathymetry of the entire planet. The contours are split into 32 separate parts based on depth of
the seafloor. The depths of interest for this study are limited to the 50 m contour but contours are
also available for a variety of other depths. OpenDEM is an open-source site with different data
layers available for download including but not limited to GEBCO products. The format of the

data was a polyline shapefile.

Elevation Source Data

For elevation data the national map site from USGS was used. Elevation data are of 1/3
arc second resolution or 10 m resolution. This level of resolution creates large files for such an
extensive area but is still not too large to be of use. Each grid used is of 1x1 degree in size so
approximately 66 separate files were downloaded from the USGS elevation DEM. Each one of

these was downloaded in GEOTIFF format.

County Layer Source Data

County boundaries and coastlines were obtained from the United States census site. The
counties downloaded were from the 2010 layer to maintain consistency with the other census
data used. These county level boundaries are 1: 500,000 resolution and were used to delineate
different counties. They were mainly used as a standard attribute table to store data found from
other analyses for the final analysis. As well as this they were used to find the standard length of

the coastline for each county. It is notable that Maryland and Virginia both include cities as
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being their own counties so eight of the entities in this study are treated as counties despite being
labeled as cities. They serve the same function as a sub state entity and as such are considered
equal to counties. The cities in question are Baltimore, MD (there is also a Baltimore County in
Maryland that is its own county. Both are used in this study.), Hampton, VA, Newport News,
VA, Norfolk, VA, Poquoson, VA, Portsmouth, VA, Suffolk, VA, and Virginia Beach, VA. Refer

to figure 2 to view these cities. This file was downloaded as a polygon shapefile layer.

Shoreline Source Data

Shoreline data is courtesy of NOAA National Ocean Service in the form of the medium
resolution shoreline layer. Average scale of the layer is 1: 70,000 but according to NOAA it is
said to differ based on the area that one is in. These data show the mean high tide mark for the
entire shore. The shoreline differs from the coastline mentioned previously in that this is not a
simple straight-line measurement but includes the smaller details that are lost in coastlines such
as estuaries and other smaller features on or near the coast. The layer is derived from NOAA

nautical charts and is downloaded in the form of polyline shapefile.

Social Source Data

Finally, all social data was retrieved from the United States Census of 2010. 2010 census
data were used as when the data were downloaded there was still some unreleased data and as
such it was decided to use 2010 data as it is still applicable to the region. While the entire
spreadsheet was downloaded, nine variables were used in the analyses and for 129 counties
along the coast. The variables in question are county level and are as follows: total population,
population density, percentage of population with a high school diploma or higher, percentage of

population below poverty, percentage of population over 65 years of age, percentage of
14



households that own their own vehicle, percentage of the population that speak English as a
second language, Percent of the population that is white, and percent of the population that is
female. The data was downloaded in the form of an excel spreadsheet and imported into the

attribute table of the county layer for us in ArcGIS.

Problems with Large Scale Studies

One of the main issues with a study such as this is that of scale. Due to the large study
area a variety of decisions had to be made. First counties were decided on as they are large
enough to be individually recognizable but also small enough to have variance even within the
same state. Second, 10 m elevation DEM’s were used due to easy accessibility without being
excessively large files. In this regard lesser resolution is effective at conveying larger county
subdivisions as the miniscule variance over small areas is not as important. Land cover is similar

to elevation, but the 30 m resolution was decided to be satisfactory for the purposes of this study.

Software Used in this Study

ArcMap 10.8.1 was the software used to store and create layers as well as carry out
analyses for this study. This software was chosen as it is the GIS software that I am most familiar

with and has all the tools and functions required.

Geodatabase Creation and Management

A master geodatabase was used to store downloaded data and new layers created during
analyses. A feature dataset was also added for all shapefiles used. The projection of the

Geodatabase and thus all data used for analysis was NAD 83 due to it being a standard projection
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and being recognizable. All layers shown in this study are within this master geodatabase to keep

everything in order and easily accessible.
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METHODS

Due to the nature of finding vulnerabilities of entire counties each variable had to be
made into a single number for each county. This was done in a variety of ways but leads to the
loss of some individual features due to the relatively large size of counties which is acceptable
for the purposes of this study. Smaller scale studies in areas such as cities or even within singular
counties can look at the difference in the smaller areas. Szlafsztein’s study used a similar method

in their study of Para state in Brazil (Szlafsztein & Sterr, 2007).

Physical Variables

Elevation Rationale

Elevation is among the most prevalent variables in any study regarding vulnerability to
tsunamis (Febrina et al., 2020; Murthy et al., 2011). However, the scale of this study made the
use of elevation different than many other studies done over tsunami vulnerability. This was
done by taking the percentage of each county that is at or below 5m above sea level, with that
being the benchmark for modeled tsunamis along the USEC (Paris et al., 2018). As such it
provides a useful number to give to each county to assess their individual vulnerabilities to

tsunamis based on elevation.

Land Cover Rationale

Land cover is one of the other most used physical variables in tsunami vulnerability
analyses (Dominey-Howes & Papathoma, 2006; Papathoma et al., 2003; Kaiser et al., 2013).

This is because what is on the land will have an impact on how much destruction a tsunami will
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cause and thus that areas vulnerability (Kaiser et al., 2013). In other studies, as well as this one,
urban areas are given the highest values followed by open field such as crops and plain and then
water and forests are the least vulnerable (Papathoma et al., 2003). Each cover dissipates wave
energy in different ways. Urban areas have the most people and property to be lost, for these

reasons urban land cover is given the greatest value.

Bathymetry Rationale

Bathymetry is among the most important factors regarding tsunami propagation
(Matsuyama et al., 1999; Riquelme et al., 2015; Siva & Behera, 2016). As this is not a numerical
model, far field bathymetry is not accounted for. However, the effect that continental shelves
have on tsunamis has been studied and provides the basis for the valuation of bathymetry in this
study. Siva and Behera’s study measured the effect of the continental shelf on tsunami
propagation and finds that the further the continental shelf is from the coast the higher the
tsunami can build up for when it reaches the coast (Siva & Behera, 2016). In the case of this

study the 50m shelf is used as that was found to have the greatest impact on tsunami propagation.

Coastline Length Rationale

The length of each individual county’s coastline is important when discussing their
vulnerability. Szlafsztein used the generalized length of each subdivision’s coastline length in
their study as well (Szlafsztein & Sterr, 2007). This is useful as the longer the coast upon which
the tsunami makes landfall the larger the area of each coast can be affected by said tsunami and

focused on each part of the coast.
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Coastline Complexity Rationale

Coastline complexity is a complex variable which is discussed in Szlafsztein’s study
(Szlafsztein & Sterr, 2007). The premise of this variable is that the difference in coastline and
shoreline length can impact the runup of a tsunami. Essentially the longer the shoreline is when
compared the coastline the more area that can help dissipate the waves energy. If the coast is a
straight line than the waves will simply run up with their energy being transferred directly into
the coast. However, the more features that are found on the coast the more potential for energy
transfer and thus dissipation of waves and less runup. this was calculated by dividing the
shoreline length by the coastline length and the larger the number the less vulnerable that county

would be.
Social Variables

Social variables were highly inspired by Cutter’s work on SoVI (Cutter et al., 2003). As
mentioned in the literature review this piece weighed social variables and found which ones had
the most impact on an area’s vulnerability to disasters. While the study is not focused on
tsunamis specifically, many of the variables in the study are applicable to tsunamis. For this
reason, only certain variables were used for this study and the rationale for each are generally

like Cutter’s work.

Total Population Rationale

The population of each county is perhaps the most logical variable to be used for a
variability analysis and was given the highest weight in Szlafsztein’s CVI study (Szlafsztein &
Sterr, 2007). This is a logical conclusion as vulnerability is highly characterized by exposure and

regarding social or human vulnerability there the more people in an area the more exposure there
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will be. This is true no matter the disaster as more people will cause more problems during
disasters Total population is essential for understanding social vulnerability especially for

subdivisions as large as counties.

Population Density Rationale

Population density is another variable that was heavily featured in the CV1 study and
other studies like it (Szlafsztein & Sterr, 2007; Weichselgartner, 2001; Zhang et al., 2013).
Population density is important as the more concentrated people are, the more difficulty there
will be during disaster. This is simply because traffic and overcrowding put increased stress on
infrastructure and governments (Zhang et al., 2013). Therefore, cities are more vulnerable than
other areas or counties that are less urban. Population density is an important factor to consider

in case of vulnerability to disaster.

Income Rationale

The population that is below the poverty line is tends to be among the most vulnerable
demographics to disaster (Cutter et al., 2003; Fothergill & Peek, 2004; Hallegatte et al., 2020). In
the case of county level analyses, the stat is the percentage of population that is below this
income level. Lower income levels increase vulnerability in two main ways: worse housing and
increased difficulty recovering from disasters. Poorer housing is a function of being unable to
afford better built homes. As mentioned in Cutter’s study income is a consistent indicator of

vulnerability (Cutter et al., 2003).
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Age Rationale

It comes as no surprise that elderly population plays an important role in a community’s
vulnerability to disasters (Cutter et al., 2003; Meyer, 2016; Williams & Webb, 2020). Once
again, the percentage of the county’s population that is 65 or older is the statistic used for this
variable. Elderly populations both have a harder time at escaping and a harder time at recovering
from disasters such a tsunami. This is due to them likely having a fixed income due to retirement
and so they will have a harder time replacing what is lost. Most importantly though, is that the
elderly is harder to evacuate due to their circumstances. Particularly those that live alone will
have a harder time escaping an incoming tsunami or the stress may be too much for their bodies

to endure.

Vehicle Ownership Rationale

Transportation is paramount in case of the need for evacuation (Masozera et al., 2007;
Morrow, 1999). While some of this could be alleviated by coordinated use of public
transportation, it’s unlikely that a satisfactory plan is in place for such an event particularly over
an area as large as the USEC which in conjunction with the poor public transit in most of the
United States makes for an important aspect of vulnerability (Anderson, 2013). For this reason,
the percentage of households in each county that own their own vehicles was used as a variable
for this study. The reason vehicle ownership was used is that the fewer people that own their own
vehicles, the more people in each county that will turn to public transport or their local/ county

government which will inevitably put more strain onto an already stressful situation.
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Race Rationale

Race is nuanced beyond the scope of this study but is still a necessary factor in disaster
vulnerability (Cutter et al., 2003; Flanagan et al., 2011; Fothergill et al., 1999). This is because
different races will react to disasters differently and recover from disaster differently as well
(Cutter et al., 2003). In the case of the USEC it is no secret that minorities are disproportionately
represented in low income or inner-city neighborhoods (Fothergill et al., 1999). The point being
that the percent of each counties population that is white was used for this study as vulnerability
studies tend to agree that minorities are more vulnerable due to a plethora of factors (Flanagan et

al., 2011).

Gender Rationale

Gender is another complex variable where vulnerability is concerned but is generally
seen as females being more vulnerable than men (Ashraf & Azad, 2015; Cutter et al., 2003;
Enarson, 1998; Rahman, 2013). For this reason, the percentage of females was used as the higher
number of females in a community the more vulnerable they tend to be. This is for a variety of
reasons, but it includes the lower average wages of women and the differences in their family

care responsibilities as opposed to men (Ashraf & Azad, 2015).

Education Rationale

Education attainment is often a telling variable of the prosperity and vulnerability of
different communities (Cutter et al., 2003; Frankenberg et al., 2013; Muttarak & Lutz, 2014).
This is because lower educated people will generally know less about the risks of these disaster
and less likely to heed the warnings of incoming disasters (Frankenberg et al., 2013). In the case

of this study the percentage of high school graduate in the population was used as it has been
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found that less educated people tend to show more vulnerability toward disaster (Cutter et al.,

2003).

Language Rationale

Language is a good gauge of overall community vulnerability for a few different reasons
(Szlafsztein & Sterr, 2007; Teo et al., 2019; Xiang et al., 2021). First and foremost, if someone
does not speak English or it is not their native language than they are less likely to comprehend
warning that are given before an event and if they do it will take them longer than a native
speaker to do so. Another reason is that many nonnative English speakers are foreign born and so
are in a position as they are still being acclimated to American culture as well which would make
it even more difficult to not only get out of harm’s way but possibly more specifically recover

from these disasters (Xiang et al., 2021).

Data Preparation

While the creation of the geodatabase gave a common projection and storage place for
different layers, they still had to be changed for each variable to fit into a one number format
used in the final analyses. The physical variables are the ones that required the most work as they
were not in any type of format like what was needed for the final analyses. There were multiple
steps that had to be included for each one to get them in the desired format. There was less that
had to be done for the social variables as they were already in one number format for each

county.
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Social Variable Preparation

Social variables can all be included together as the procedure to get them into the
ArcMap software was the same for all nine of the variables. Since they were downloaded as an
excel spreadsheet all that needed to be done was to add them into the attribute table of the county
layer that was being used. This was easily done by adding new float type fields into the attribute
table of the layer and simply copying and pasting each variable over from the spreadsheet. They
were sorted in alphabetical order to ensure that the correct numbers were put with correct

counties but that was all that was necessary for the social variables for data preparation.

Elevation Preparation

Due to the nature of the DEM’s that were downloaded to serve as the elevation variable,
it was a multistep process to get them into the one number format necessary for this study.
Firstly, all the 60+ DEM’s had to be mosaiced together to have one file to use for the counties.
This was then clipped to the county shapefile so that any excess area covered by the DEM was
removed and only the counties were covered. Next a query was done to select all values that
were under five meters and create a new layer with them. This layer was converted into a
polygon layer individually for each county to only include the 5-meter land above sea level and
below for one county. The total area of this layer was then compared to the area of the counties
to determine the percentage of each county that was at or below five meters above sea level. This

percentage was the value used for the elevation variable.

Land Cover Preparation

Land cover was also in a format that made it difficult to include in a one number format.

This was less complicated than the elevation variable due to the nature of valuing land cover.
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The land cover layer used included the entire contiguous United States which was then clipped to
the 5m elevation layer. Land covers were given similar values to Papathoma’s study: 1- forests,
2- wetlands and water, 3- shrubland and barren land, 4- grassland, 5- crops, and 10- Urban areas
(Papathoma et al., 2003). It should be noted that 1 is the value given to the areas of least
vulnerability and 10 for the highest. These reclassified values were then reduced to one number
by using the zonal statistics function which was used to average the value of each county based
on the number cells for each value. Urban was given a much higher value so it would have more
bearing on the final average and as such the counties with highest levels of urbanism should be
the most vulnerable due to the presence of people and economic activity (Papathoma et al.,

2003).

Bathymetry Preparation

Bathymetry is usually done with numerical modeling, but this was not applicable to this
study. Siva’s study on the effects of the continental shelf on tsunami run-up was important in this
regard as it gave the best alternative to a numerical model (Siva & Behera, 2016). With the 50-
meter shelf being used as a contour line it was possible to do a simple proximity analysis that
gave the distance from the 50-meter shelf contour to each county. This gave one number for each
which made it so the higher the distance the larger the value those counties would be given.

These distance values were added to the attribute table of the county file after this analysis.

Coastline Length Preparation

Coastline length was the least difficult to make into a one number format. This was done
by converting the county polygon layer into a polyline layer and then only selecting the coast to

create its own coastline layer. The intersect function was then used against the original county
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shapefile which gave the length of each segment for each county. This immediately gave the
length of the coastline for each county. The measurement of the coastline length was then added

to the attribute table.

Coastline Complexity Preparation

Coastline complexity was found using a similar method to the coastline length but this
time using the much more detailed shoreline layer. As seen in figure 3 the shoreline layer
includes coastline features which were selected in the same way that the coastline itself was.
When the shoreline layer was created from this selection, the intersect function was once again
used to get the total shoreline length for each county. With this number it was possible to divide
the shoreline length by the coastline length to get complexity. The higher this number the longer

the shoreline when compared to the coastline and the less vulnerable these counties would be.

Pre-Analysis Procedures

With all the data in the correct format the analyses could then be done. The steps for all
three methods were the same for the beginning of each analysis. This entailed the reclassification
of each layer on a scale of 1 to 10. Each variable that was added to the attribute table of the
counties layer was converted into a raster layer to reclassify. This included every variable used
except for the land cover layer as it was already in raster format and as such did not need to be
included in the attribute table of the layer. After all raster layers were created, they were
reclassified based on what the layer required. For every percentage layer aside from education
and language the higher the percentage the higher the reclassified value. These include elevation,
age, poverty, vehicle ownership, gender, language, and race. Due to education including those

that had graduated high school these values were reversed, as the lower the percentage the higher
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the vulnerability. For each of the variables that were totals aside from coastline complexity, the
higher the number the larger the values given to it. This includes bathymetry, coastline length,
total population, and population density. Coastline complexity is switched as the higher the
complexity of the coast the less vulnerable that county will be considered. That is what was done
to every layer before the three different methodologies were utilized. Figures 4-17 show the

reclassified view of each variable across the entirety of the USEC.
Additive vs Multiplicative approach

Both an additive and multiplicative approach were attempted to see if it would be
worthwhile to use one over the other. These approaches are done while using the map algebra
tool and as their names suggest allowing the variables to either be added or multiplied. After
testing them both it was found that there were limited differences between the 2. For this reason,
multiplicative analyses were omitted from this study as they provided little additional

information regarding vulnerability.
Totaling Methodology

The first method utilized for the analysis was the totaling analysis. This analysis was
done by simply taking all the reclassified layers and adding them together to get a final score.
This was done separately with both social and physical before they were added together to get
the final total vulnerability score. After they were added together, they were then divided into
terciles to have a low, medium, and high vulnerability for each county. This is the simplest
methodology and does not assume that physical and social variables are equal since there are
nine social variables compared to only five physical variables. This makes this method tend to

lean further towards the social side than physical.
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Averaging Methodology

The averaging methodology differs from the totaling method in that it considers the
number of variables included for social and physical vulnerability. This was done in the same
way as the totaling methodology but instead of only adding the variables together they were then
divided by the total amount of variables for that part of vulnerability. For the physical variables
this meant adding all five variables together and then dividing by five to get the average physical
vulnerability of each county. The same was done for the social variables but instead they were
divided by 9. After the average of both social and physical vulnerabilities were found they were
then added together to get the average vulnerability of each county. Similarly, to the totaling
method these were then divided into terciles to obtain a low, medium, and high vulnerability.
This methodology assumes social and physical factors account for vulnerability the same

amount.

Color Cube Methodology

The final method used is called the color cube method due to the nature of the legend
used for the maps created by it. This is a bivariate method in that physical and social variables
were divided into terciles separately. As such there ends up being a low, medium, and high
physical as well as low, medium, and high social vulnerability. This makes it so instead of only
having three possible values there are instead nine possible combinations in this method which
allows for a more nuanced look at the counties to see whether social or physical vulnerability has

a higher impact on a county’s overall vulnerability.
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Variables Table
Name Description
Elevation Percent of county below five

meters above sea level

Land Cover Weighted values given based
on their vulnerabilities to

tsunamis

Bathymetry Distance from the 50-meter

continental shelf

Coastline Length Straight line distance of the

coastline of each county

Sources

(Febrina et al.,
2020), (Murthy et
al., 2011),
(Szlafsztein & Sterr,

2007)

(Dominey-Howes &
Papathoma, 2006),
(Papathoma et al.,
2003), (Kaiser et al.,
2013)

(Matsuyama et al.,
1999), (Riquelme et
al., 2015), (Siva &
Behera, 2016)
(Chang et al., 2018),
(Szlafsztein & Sterr,

2007)

Table 1: Table with descriptions of each variable and sources that support them.

30



Variables Table

Coastline Complexity Difference in shoreline (Bush et al., 1999),
distance/ coastline distance (Sinaga et al.,
2011), (Szlafsztein

& Sterr, 2007)

Total Population Total population of each (Szlafsztein & Sterr,
county 2007),
(Zhou et al., 2014)
Population Density People per square mile of each  (Szlafsztein & Sterr,
county 2007),
(Weichselgartner,
2001), (Zhang et al.,
2013)
Income Percent of each county’s (Cutter et al., 2003),

population below the poverty  (Fothergill & Peek,

line 2004), (Hallegatte et
al., 2020)
Table 1: Table with descriptions of each variable and sources that support them.
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Variables Table

Age Percentage of each county’s (Cutter et al., 2003),

population above 65 years of (Meyer, 2016),

age (Williams & Webb,
2020)
Vehicle Ownership Percentage of households that ~ (Masozera et al.,
own at least one personal 2007), (Morrow,
vehicle 1999)
Race Percentage of people in each (Cutter et al., 2003),
county that are white (Flanagan et al.,

2011), (Fothergill et

al., 1999),
Gender Percentage of people in each (Ashraf & Azad,
county that are female 2015), (Cutter et al.,
2003),

(Enarson, 1998),

(Rahman, 2013)

Table 1: Table with descriptions of each variable and sources that support them.
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Variables Table

Education Percentage of people in each
county that have at least a high

school diploma

Language Percentage of people in each
county that speak English as a

second language

(Cutter et al., 2003),

(Frankenberg et al.,

2013), (Muttarak &

Lutz, 2014)

(Szlafsztein & Sterr,
2007),

(Teo et al., 2019),

(Xiang et al., 2021)

Table 1: Table with descrivtions of each variable and sources that suvport them.
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Figure 3: Map of Chesapeake Bay showcasing the difference between coastline and
shoreline.
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Figure 4: Reclassified layer of each counties percentage of population that are high
school graduates.
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Figure 5: Reclassified layer of each counties percentage of population aged 65 and
older.
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Figure 6: Reclassified layer of each counties percentage of the population that is
female.
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Figure 7: Reclassified layer of each counties percentage of population that speaks
English as a second language.
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Figure 8: Reclassified layer of each counties total population.
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Figure 9: Reclassified layer of each counties population density.
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Figure 10: Reclassified layer of each counties percentage of population below the
poverty line.
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Figure 11: Reclassified layer of each counties percentage of population that is white.
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Figure 12: Reclassified layer of each counties percentage of households that own
their own personal vehicle.
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Figure 13: Reclassified Layer of each counties percentage of land that is at or below
5m above sea level.
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Figure 14: Reclassified layer of each counties land cover zonally averaged.

45




Distance from Continental
Shelf Reclassification

360 Miles

50m Shelf

Value
oy High 10

- Low :1

Figure 15: Reclassified layer of each counties distance from the 50m bathymetric
contour.
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Figure 16: Reclassified layer of each counties length of coastline.
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Figure 17: Reclassified layer of each counties coastline complexity.
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RESULTS

The results of the three analyses will be shown in this section. The totaling method
assumes that all variables are worth the same amount, but that social vulnerability is worth more
due to there being more social variables. The averaging method instead assumes that both
physical and social variables have equal impact on the vulnerability of an area. The color cube
method is a bivariate method that splits the physical and social vulnerability into terciles

individually which are then brought together in the final map.

Totaling Method Results

Totaling methodology assumes that all variables are worth the same amount, but that
social vulnerability has more bearing on overall vulnerability than physical vulnerability does.
The maximum possible social vulnerability score in this method is 90 while the maximum
possible physical vulnerability score is 50. This means the maximum possible overall
vulnerability score would be 140 using the totaling method. Figure 18 shows the physical
vulnerability of the USEC using the totaling method. Perquimans county, NC has the highest
total physical vulnerability with a score of 41. Rockingham county, NH has the lowest total
physical vulnerability with a score of 13. Figure 19 shows the social vulnerability of the USEC
using the totaling method. Kings County, NY has the highest total social vulnerability with a
score of 85. Dare county, NC has the lowest total social vulnerability with a score of 22. Figure
20 shows the final vulnerability using this method after adding both the physical and social
vulnerabilities together. Miami-Dade County, FL has the highest total vulnerability with a score
of 112. Rockingham County, NH has the lowest total vulnerability with a score of 41. Figure 21

is the result of dividing the final vulnerability into terciles of low, medium, and high. Low values
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were those that were between 41-64, medium were 65-88, and high were 89-112. There are 17
counties that fall into the high category, 37 counties that fall into the low category, and 75 that

fall into medium category.

Averaging Method Results

Averaging methodology assumes that physical and social vulnerability are equal
regarding overall area vulnerability. Due to the nature of this method the maximum possible
score for both the average physical and social vulnerabilities is 10 which means the maximum
average score is 20. Figure 22 shows the physical vulnerability of the USEC using the averaging
method. Perquimans County, NC has the highest average physical vulnerability score at 8.
Rockingham County, NH has the lowest average physical vulnerability score at 2. Figure 23
shows the social vulnerability using the averaging method. The highest average social
vulnerability is shared by Kings County and Bronx County, NY with a score of 9. The lowest
average social vulnerability is shared by six counties: Camden, NC, Dare, NC, Lincoln, ME,
Nantucket, MA, Sagadahoc, ME, and Queen Anne’s, MD with scores of 2. Figure 24 shows the
overall vulnerability after adding both the physical and social vulnerabilities together. Miami-
Dade County, FL has the highest average overall vulnerability with a score of 15. The lowest
average overall vulnerability is shared by three counties: Lincoln, ME, Rockingham, NH, and
Sagadahoc, ME with scores of 5. Figure 25 is the result of dividing the final vulnerability into
terciles of low, medium, and high. Low values were those that were between 5-8, medium were
9-11, and high were 12-15. There are 24 counties that fall into the high category, 32 in the low

category, 73 in the medium category.
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Color Cube Method Results

The color cube method brings the social and physical vulnerabilities together without
adding them together so the nuance of what makes the county more vulnerable can be seen. This
method does not use scores but instead splits both the physical and social variables into terciles
before combining them. This gives nine possible combinations between social and physical
variables. Figure 26 shows the Physical vulnerability split into terciles. There are 32 counties that
have high physical vulnerability, 25 counties that have low physical vulnerability, and 72
counties that have medium physical vulnerability. Figure 27 shows the social vulnerability split
into terciles. There are nine counties that have high social vulnerability, 65 counties that have
low social vulnerability, and 55 counties that have medium social vulnerability. Figure 28 shows
the different combinations that are created when the social and physical terciles are put together.
It is called the color cube methodology as the color that the county falls into on the cube is the
result of the combination of the two variables. H represents high vulnerability, M represents
medium vulnerability, and L represents low vulnerability. These are also in a format where social
vulnerability is represented by the first letter and physical vulnerability is represented by the
second letter. Each combination has multiple counties included in it and the number for each
combination is as follows: HH-2, HL-1, HM-6, LH-16, LL-14, LM-35, MH-14, ML-10, and

MM-31.
Small Scale Maps

While maps of the entire USEC allow general trends and differences to be seen, smaller
scale maps allow for a more thorough understanding of what causes the variance. As such six

localized figures were created with a graphic of each method sided by side within. These will
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allow for a viewing and dissection of each method to see what causes the variance between them.
Figure 29 is the localized view of Chesapeake Bay counties of Maryland. Figure 30 shows the
counties around the Hampton Roads region of Virginia. Figure 31 includes the five Boroughs of
New York City and the county of Hudson, NJ. Some of the city of Boston and its surrounding
area are included in figure 32. A large portion of the coast of North Carolina is seen in figure 33.

Finally, the area surrounding Miami, FL is examined in figure 34.

Chesapeake Bay

The counties of Maryland that surround the Chesapeake Bay showed variability between
each method and are thus a useful area to take a closer look at. Figure 29 includes the graphics
that will be discussed here. While the totaling and averaging methods are relatively
unremarkable outside of the city of Baltimore, the color cube method shows a great deal of
variability. This is due to the high physical vulnerability that the Bay has according to the
method. Baltimore itself is not particularly physically vulnerable but as already covered, since it

is a city, it has among the highest social vulnerability.

Hampton Roads

The next smaller region that will be examined is the Hampton Roads region in Virginia.
Figure 30 has the graphics that include each of the methods for this area. Totaling and averaging
methods are identical with the exception of Poquoson County being low vulnerability with the
totaling method and medium vulnerability in the averaging method. The exceedingly high
vulnerability of the counties at the entrance of this coastal feature draws the eye. This includes
six city counties: Hampton, Newport News, Norfolk, Poquoson, Portsmouth, and Virginia

Beach. As noted, all six of these are considered cities and it shows in the vulnerability of the
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area. Poquoson and Virginia Beach are both highly physically vulnerable while lacking social
vulnerability. Hampton, Newport News, and Norfolk are highly socially vulnerable while being
of medium social vulnerability. Finally, Portsmouth is one of only two counties in the entire

study that was found to have both high social and physical vulnerability.

New York City

The New York City area comes as no surprise in terms of being highly vulnerable. As by
far the largest city by population in the United States it naturally ranks among the most
vulnerable areas of the country in most vulnerability studies. However, according to this study
there is some variability to the counties that make up or are near the city. Figure 31 includes the
graphics that showcase the vulnerability of the area. The variability cannot be seen in the totaling
or averaging methods as all six counties have high vulnerability in these studies, however, the
color cube method shows a slightly different amount of variability. Physical vulnerability
accounts for most of the discrepancies seen between the counties as all but one of the counties
has high social vulnerability. The one county that does not have high social vulnerability is

Richmond County which is better known as Staten Island.

Northeast Massachusetts

The region of Northeast Massachusetts that was used includes a part of the city of
Boston. Figure 32 includes the graphics that showcase the areas vulnerability. Not all of Boston
is included as the only county included that can truly be considered a part of the city is Suffolk.
The rest of the counties have some of the suburbs but as seen in the figure are not highly

physically or socially vulnerable. Due to this Suffolk is the main county of concern in this area.
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As with the other large cities included, this is highly socially vulnerable but also has medium

physical vulnerability.

North Carolina

The next region selected is the Northern counties of North Carolina. This includes most
counties that are in North Carolina used in this study. Figure 33 includes the graphics that show
the vulnerability of the area using all three methods. What is of note is that there is variability
between the totaling and averaging methods when viewing this region. This can be explained by
this being one of the most physically vulnerable areas of this study and as such the totaling
method that makes physical vulnerability less impactful shows this area as being less vulnerable.
With the area around Albemarle Sound, which is the Northern portion of this region showing

relatively high vulnerability in methods.

Southern Florida

The final region that was studied is that of Southern Florida, which was chosen due to the
presence of the city of Miami in the area. Figure 34 includes the graphics of each method in the
area. Miami-Dade County is one of only two counties that have both high social and physical
vulnerability in this study. With that in mind as well as the fact that it is among the largest cities

in the study, it is a required region to discuss.
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Figure 18: Physical vulnerabiliy of each county using the totaling method.
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Figure 19: Social vulnerability of each county using the totaling method.
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Figure 20: Final layer for the totaling method that shows the vulnerability of each
county by value.
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Figure 21: Final layer for the totaling method that shows the vulnerability of each
county in terciles.
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Figure 22: Physical vulnerability oof each county using the averaging method.
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Figure 23: Social vulnerability of each county using the averaging method.
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Figure 24: Final layer for the averaging method that shows the vulnerability of each
county by value.
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Figure 25: Final layer for the averaging method that shows the vulnerability of each
county in terciles.
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Figure 26: Phyiscal vulnerability of each county by dividing the total method into
terciles. This is the layer used for the physical portion of the color cube method.

63




Social Tsunami Vulnerability

360 Miles
)

Figure 27: Social Vulnerability of each county by dividing the totaling method into
terciles. This is the layer used for the social portion of the color cube method.
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Figure 28: Vulnerability Layer created using the color cube method.
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DISCUSSION
Similarities and Differences Between Methods
Similarities
The most obvious similarity between the three methods is the prevalence of cities in the
high vulnerability classification. In all three methods the areas that encompass the cities of
Baltimore, Boston, Miami, New York City, and the greater Hampton Roads area all have at least
one county with high vulnerability. The reasons for cities showing the most vulnerability are
complicated and varied but these methods follow that idea that cities tend to be the most
vulnerable areas (Borden et al., 2007). Even with the averaging method they stand out due to

how socially vulnerable they are. In almost every variable used for social vulnerability studies,

counties with cities are at or near the top.

While cities tend to be high in most social variables the same is not true for the
concentration of high physical vulnerability. Physical variables like elevation, land cover, shelf
distance, coastline and shoreline differences are not as directly linked as are some of the social
variables, meaning that the presence of a high value in one physical variable does not
automatically lead to the presence of a high value in a different physical variable. For example,
Miami-Dade County has high physical vulnerability despite a low bathymetry score. The
opposite can also be found in counties with one high physical vulnerability score while the rest
are low. In general, however, it is easier to see the cities in each method than it is to see the
physical vulnerability driven counties as they do not cluster like socially vulnerable cities. It is
also worth noting that the totaling and averaging method give the exact same vulnerability to

every county within New York City. The color cube map shows that vulnerability is low outside
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of NYC and Boston. As the vulnerability is relatively low across the region there is less room for
variance by splitting them into terciles and thus their vulnerabilities all match. Similar trends can
be seen across swathes of South Carolina, Georgia, and Florida where there is little variance

between methods and vulnerabilities.

The main similarities that can be gleaned across the entirety of the USEC according to
these three methods are: large cities are always highly vulnerable, physical vulnerability is not as
focused as social vulnerability, and social variables alone can lead to high vulnerability while
physical vulnerability cannot do the same. This is likely partially due to the methods used but

due to the nature of human settlement it stands to reason that this is also real-world trend.

Differences

While there are a variety of trends that can be seen across each method, there are an equal
number of differences. The color cube method illustrates these differences well in that some
counties that look vulnerable using this method are not vulnerable according to the other two
methods. Two examples of this are Nantucket, MA and Queen Anne’s, MD. Examining these
two counties shows high physical vulnerability with low social vulnerability. However, both
counties are categorized as low vulnerability according to the other two methods despite the low
vulnerability categorization, these counties are physically vulnerable, as shown by the color cube
method. The opposite is not true as every county that has high social vulnerability in the color
cube method has high overall vulnerability using the other two methods. There are only marginal
differences between the totaling and averaging methods with the main being that there are seven

more high vulnerability counties in the averaging method than the totaling.
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What makes a place vulnerable?

The vulnerability of each area has different drivers unique to that area. For areas that
show high vulnerability both socially and physically, there are commonalities between them.
There are two such counties according to the Color Cube Method. These counties are
Portsmouth, VA and Miami-Dade, FL. Portsmouth shows high social vulnerability in both
population density and race values. To add to these, many of the other social variables are above
average. Miami-Dade shows similar trends but as it is home to a larger city, tends to show higher
social vulnerability. In both counties, physical vulnerability is increased by among the highest
elevation values on the entire coast. The other physical variables differ in that Portsmouth has
high land cover values and moderate values in the other three variables whereas Miami-Dade has
low bathymetry score and above average in the other three. What these areas have in common is
they are home to cities and are low lying. This is not to say that all low-lying cities have high
physical vulnerability but instead that they have the greatest likelihood of including all the
ingredients of the highest vulnerability areas. Miami and Portsmouth show this and are of
concern as they show high vulnerabilities in both in their current state and without change to

their populations or the surrounding environment.

High social vulnerability is common in cities in this study. The largest cities on the coast
all have high social vulnerability: Baltimore, Boston, Miami, and New York City have the
highest social vulnerability scores. This is driven primarily by high total population, low income
levels, race scores showing high minority concentration, and low education attainment. The only

other area that shows high social vulnerability is the city of Portsmouth. Other areas show
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concentrations of medium social vulnerability but generally lack the population to show among

the highest social vulnerabilities.

High physical vulnerability is driven by high scores in two or more variables. While
cities denote the areas of highest social vulnerability, physical vulnerability does not focus in the
same ways. Physical vulnerability tends to be high in three regions: North Carolina, Hampton
Roads, and Chesapeake Bay. Chesapeake Bay has high bathymetry and elevation scores,
Hampton Roads has high elevation and land cover scores, and North Carolina has high elevation
and coastline scores. Miami-Dade also shows high physical vulnerability. The methods of this
study show low lying areas that have high scores in one other physical variable to be among the

most physically vulnerable areas along the coast.

Neither social or physical vulnerabilities are static and should be monitored for changes
in each region that already shows vulnerability. Cities that are less physically vulnerable today
could become more so with coastal erosion or sea level rise. Physically vulnerable areas could
find themselves more socially vulnerable depending on the demographic changes in the regions.
Understanding these changes and their impacts on vulnerability can help to plan for the future of

these areas so they are better prepared for possible disasters.

Benefits, Drawbacks, and Uses of Methods

Totaling Methodology Benefits and Drawbacks

Due to being the simplest method, the totaling method tends to have the simplest benefits.
First, it shows the data in its most raw form and allows an easy view of each individual variables

effect on the study. Also, before being switched into terciles it shows the greatest variance
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between counties due to the sheer number of possible values. This is a benefit if viewed before it

is switched into tercile format. The final main benefit is simplicity.

The drawbacks of this method are linked with its benefits. While the sheer number of
values lets you see the miniscule differences between counties, these minute differences are
worth little in the grand scheme of things. The next possible drawback is that this method is
skewed toward social vulnerability as there are four more social variables than physical

variables. As such this is the method that provides the most skewed results.

Averaging Methodology Benefits and Drawbacks

The averaging method has benefits that are mostly related to its differences from the
totaling method—this method treats physical and social vulnerability as equal whereas the
totaling method is skewed toward social vulnerability. A main drawback of this method is that it
limits the variance of vulnerability. While it has more values than the color cube method, it is
harder to see what drives the variance between counties because each variable is worth so little

after averaging.

Color Cube Methodology Benefits and Drawbacks

The color cube method is the most useful method. It allows for variance and for the
drivers behind that variance to be seen much more easily. By not adding the physical and social
vulnerabilities, it is easier to see which type of vulnerability may be driving overall vulnerability.
It also allows for an understanding of how the vulnerability of these areas may change with
changing demographics or landscapes in the future. This is to say that if a county has high
physical vulnerability but low social vulnerability, that may be subject to change. This is because

depending on the movement of humans and if a large city may start to grow there then it will
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become more socially vulnerable and thus its overall vulnerability would be quite high. The
same could happen for a city that is highly socially vulnerable but has low physical vulnerability.
If the landscape changes from phenomena such as sea level rise, the city may become more

physically vulnerable while already being socially vulnerable.

The drawbacks of this method are related to the fact that both social and physical
vulnerability are split into terciles limiting their variability. Only having three levels of
vulnerability masks small differences between counties and thus counties that are only

marginally similar in terms of overall vulnerability may be grouped together.

Uses of Each Method

The totaling method created in this study should primarily be used if the overall
vulnerability of a county needs to be found. If all variables are treated equally and social
vulnerability is more impactful than physical vulnerability, this method will show that. Cities
will be vulnerable in all methods, so this method is likely best used to show the vulnerabilities of
other areas. Non-city counties will be more useful in finding the variance of each county relative
to each other, particularly with the 140 scores that are possible in this method. Despite being
skewed towards large cities due to the prevalence of social vulnerability, we can see the overall

variance between each county here.

The averaging method allows for physical vulnerability to haver larger impacts on each
county. As such this is the most useful method for counties that are the most physically
vulnerable. Physically vulnerable areas are less pronounced in the first method. This method

changes that since these physically vulnerable areas are better represented. Areas such as North
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Carolina are the best for this method as it will show that they are still highly vulnerable despite

not having high social scores.

The color cube method is useful for planning purposes. Policy makers can use this
method to better understand what their focuses should be in their respective counties. The other
two methods give overall vulnerability but do not show whether physical or social variables
drive vulnerability. Using a bivariate method, it is possible to see which vulnerability is low,
medium, or high and plan accordingly. This can be applied to counties that are highly socially or

physically vulnerable as there are different ways to alleviate these two types of vulnerability.

Limitations of this Study

This study accomplished the goal of locating what areas of the USEC are the most
vulnerable to a tsunami but there are a few considerations to make. Variable selection and
weighting are among the most important aspects of any vulnerability study. While the variables
selected for this paper are all backed by prior research, no area can truly understand what
variables are most important to their vulnerability until a disaster occurs. Since a tsunami has not
occurred in this region in recorded history the true weight of each variable cannot be found. The
next limitation involves numerical modeling. While modeling can help in understanding the
propagation and run up of this study, this was not the goal of the research. The goal was to create
a vulnerability analysis that could be done by counties individually for what suits their needs.
Numerical modeling is not easily accessible and does not give actual vulnerability ratings to each
county. The final major limitation was that of scale. This is because each community is unique

and so are not going to experience vulnerability in the same way. Individually counties would
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use smaller subdivisions but by using counties it makes it possible to view which regions and

more specifically counties within those regions are most vulnerable.

Future Research

As mentioned, this study is meant to be able to transition into smaller scale studies. While
using counties as the subdivision worked well for this study, due to their size they cannot give an
in depth look at smaller communities within them. No county has uniform distribution of the
different variables used in this study and as such smaller subdivisions would give a better look
into the true vulnerability of communities. With knowledge of the most vulnerable counties
based on this study, it gives the opportunity to take the most vulnerable counties shown in this
study and analyze them further. Further research would include using smaller social subdivisions
within a single county or city to see the most vulnerable parts of the area. This could be done
with either census tracts or even more preferably census blocks as these would allow the
variation within an area to be seen. Future research would also allow for tweaking of the
methodology and through researching the concept more it may be possible to update this study to
create a timelier product. This could either reinforce the findings of this study or disprove them
which are both satisfactory results and could provide a better study of the smaller areas. After
this it would be preferable to work with the subdivisions whether that be state, county, or local
governments to assist in preparation, mitigation, and awareness measures so these areas

understand the danger of these disasters and how to withstand them should the worst happen.
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CONCLUSION

There is no specific region of the USEC that is the most vulnerable. However, as
discussed there are regions that stick out due to their increased vulnerability. As a rule, large
cities generally dominate this section with Miami, Baltimore, New York City, and Boston being
the prime examples. However, there are areas like the Hampton Roads and Albemarle Sound of
North Carolina that stick out due to their high physical vulnerabilities. The important conclusion
that can be drawn is that it is not as simple as being the largest city makes an area the most
vulnerable. If the disaster hits harder in an area due to the physical landscape of the land, then it
can have a greater impact on a smaller population. While Miami is a large city, it is overall much
smaller than New York City. Despite this it stands out as one of only two counties with high
physical and high social vulnerability. The other county is Portsmouth which is not home to a
large city. However, any area that has high vulnerability should be noted since a disaster would

likely impact them greatly either way.

According to the results of this study there are a few major areas of concern for
vulnerability along the USEC. The most notable and least surprising of the results is that all large
cities along the coast show high vulnerability in every method used. The areas of high physical
vulnerability are less concentrated. The most highly physical vulnerable areas are centered
around Chesapeake Bay, Hampton Roads, North Carolina, and Southern Florida. The large cities
that also land in these highly physical vulnerable regions should garner the most attention. These

cities are Miami, Hampton Roads, New York City, and Baltimore.

The methods of this study were able to differentiate between counties of low to high

vulnerability. This is important as a more highly vulnerable county should take precedent over a
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less vulnerable county when disaster planning takes place. Giving all counties and larger areas
the same amount of care would be a waste of resources if one community is better equipped to
handle it in both their physical landscape and their population. The study accomplished the goal

of finding the vulnerabilities of the counties of the USEC.

Tsunamis naturally cause great distress in any area where they may happen. Despite this
there is limited preparation along the USEC in case of a large tsunami that could be generated by
several sources. Increasing awareness of the disaster is always an effective measure to reduce
vulnerability. While the population may not take the threat seriously, simply understanding that a
threat is present makes one better equipped to handle it. Coastal communities understand this
better than most as they are no strangers to disasters such as hurricanes or Nor’easters. What
must be accomplished now is the implementation of these general plans to mitigate a possible
disaster. More specifically, each county should prepare its own unique plan for these disasters.
This would be possible by studying their own counties individually to find the nuance of their
populations and where the most help would be needed. The goal of each decision-making body
along the USEC should be to reduce the possible damage of any hypothetical disaster to their
population and this study aimed to see which counties have the most work to do to accomplish

this.
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APPENDICES

Social Variable Data

Social Variables

NAME Language Education Populatior Poverty  Vehicles Gender Race Elderly PopDensit
Accomack 5.3 789 34066 9.7 91 51 68.7 1335 364
Anne Arundel 3.6 90 227020 3.3 4.6 al.a 79.3 1038 7080
Atlantic 11 84.7 273162 8.8 134 ala 67.4 9.6 3292
Baltimore 4.7 888 709195 5.3 7.6 527 679 1338 9779
Baltimore 3.7 774 620538 165 292 a3 314 162 42154
Barmstable 2.4 94.7 217483 1 4.6 52.3 954 105 53055
Beaufort 3.7 815 47183 144 9.3 522 68.8 12 527
Beaufort 6.1 906 155550 T4 51 a0.4 75.4 141 2445
Bertie 0.3 723 20890 191 101 513 36.3 134 275
Brevard 31 90.6 540583 T2 45 51 859 102 3042
Bristol 8.3 801 546433 8.8 9.5 al6 91.6 16.3 6600
Bristol 4.6 86.2 a0a01 3.3 71 alsg 97.4 144 14442
Bronx 251 68.8 1363725 258 388 532 23.5 139 150726
Broward 148 871 1734139 91 71 alh 66.1 8.7 12337
Brunswick 2.7 84.7 101984 102 5.7 511 85.7 141 1301
Bryan 13 884 20039 88 3.9 306 83.1 8.7 313
Calvert 1 919 87891 2.8 32 a0.7 84 172 2004
Camden 11 801 49293 126 45 489 76.6 156 368
Camden 18 884 9719 6.5 12 a0.4 829 132 289
Cape May 3.4 882 97684 6.4 9.3 513 91.9 116 3847
Carteret 19 87.6 62063 81 4.8 a0.6 90.8 13.7 1017
Cecil 18 86.7 100139 6.3 4.6 a0.4 92.3 94 1567
Charles 18 904 143912 3.7 3 al6 55.8 133 1391
Charles City 0 74.8 7205 6.4 4.6 a0l 43.7 12 302
Charleston 3.3 874 342434 115 89 515 65.6 128 2350
Chatham 31 874 256428 116 2.6 519 55.3 12.3 3748
Chowan 2.6 774 14859 126 133 509 61.8 151 868
Colleton 19 75.3 38833 17.% 103 517 58.7 12.3 303
Craven 2.7 87.5 100001 117 2 503 71.7 131 1137
Cumberland 2.7 93.3 279904 6.9 7.7 al.d 94.3 144 2018
Cumberland 116 Ta.8 155456 128 114 48.5 79 186 20a0
Currituck 14 847 23299 6.2 2.6 a01 92.5 164 306
Dare 3.6 918 336320 6 15 494 946 103 294
Dorchester 19 81 32287 9.5 9.4 52.3 69.4 236 462
Dukes 32 93.5 16155 5.5 6 a0.6 88.7 26.6 1064
Duval 5 87.2 B854848 104 77 515 64.1 133 6438
Essex 10 882 735642 7.7 106 52 83.7 13.8 9681
Essex 13 801 10901 8.3 4.6 316 60 151 368
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Harford
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Indian River
Isle of Wight
James City
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Enox
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Linceln
Martin
Mathews
Melntosh
Miami-Dade
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Physical Variable Data

Physical Variables

NAME
Accomack
Arnne Arundel
Atlantic
Baltimore
Baltimore
Barnstable
Beaufort
Beaufort
Bertie
Brevard
Brizstol
Bristol
Bronx
Broward
Brunswick
Bryan
Calvert
Camden
Camaden
Cape May
Carteret
Ceal
Charles
Charles City
Charleston
Chatham
Chowan
Colleton
Craven
Cumberland
Cumberland
Currituck
Dare
Dorchester
Dukes

Duval

Essex

Essex

Shoreline

887.0062
301.3885
4523113
159.2952

39.9747
318.6523

332.403
1179.079
103.4042
280.0706
196.6647
30.84547
73.70763
331.6095
401.6953

208.826
138.2845

430387
187.6341
5349379
T6T.5303
172.8746
190.4979
136.8044
1564.047
835.2689
75.93913
2492135
228.1192
369.9796
436.1194
3422881
458.7958
559.2748
223.3411
421.5981
334.8978

25.6678

Coastline

Shoreline Coa Elevation

119.463 T.424043 0.7254
5523359 5.456616 0.1955
232562 1945763 0.3183
31.72344 5021372 0.0282

0.94837 4215095 0.6428
2182153 2376792 0.3246
91.15067 3.646743 0.7602
68.08381 17.31805 0.855
253534414 4429536 0.19035
73.71458 7.869143 0.3898
4292777 4581294 0.0969

206554 2.461607 0.512
1328274 5.549129 0.3166
24 20549 1369977 09971
4901389 8.194703 0.0029
3.317257 629514 0.4182
31.95984 4.326819 02012
31.04666 15.03716 0.839
32.16158 5.834107 0.9623
61.90079 8.642182 0.7716
250.4083 3.065115 0.8179
28.07885 6.1567357 0.1298
6295564 2.888273 0.1627
46343352 20.391352 2251
97.30015 16.07446 0.7916
3005397 16.68737 0.9205
39.80389 1.907832 0.7916
1996255 12.48405 0.3284
36.74245 6.208601 0.2891
146.7095 2.521852 0.0692

492919 8.847689 0.3492
113.0033 3.02901 0.9903
280.5922 1.635099 0.9897
142.0011 3.938525 0.7975
116.9384 1.909089 0.3537

19.9857 21.09499 0.4875
7816709 4284383 0.1681
11.48483 1094202 0.16a7

Pag f4

94

Bathymetry

0.631906
2.090091
0.783008
2234245
2353061
0.004215
0939415
0.927458
1.538233
0.392031
0.460345
0.636313
0.452742
0.021525
0.721968
1.350696
1.800327
1.250894
0939595
0.727936
0.455663
1.761568
2121821
1.979496
0.660879
1.142439
1.425267
0.893153

0.77041
0.026125

093602
0.813394
0.203116
1.302309
0.207308

1.09441
0.030645
1901241

Land_Cover

2.727445
3.177365
2.727445
3.506816
4399301
2.727445
2.603044
2603044

190698
2061146
3.506816
2.727445
3.506816
4148019
2661781
2.409149
2961146
2.331003
2.409149
2961146
3.087816

190698
3.536433
1.775548
2661781
3.192798
3.081396
2.409149
2.878044
3.506816

3.039434
3.087816
2961146
1.910636



NAME
Fairfax
Fairfield
Flagler
Georgetown
Gloucester
Glynn
Hampton
Hancock
Harford
Hertford
Horry
Hudson
Hyde
Indian River
Isle of Wight
James City
Jasper

Eent

Eent

Eent

King George
Kings

Enox
Lancaster
Liberty
Lincoln
Martin
Mathews
Mclntosh
Miami-Dade
Middlesex
Middlesex
Middlesex
Monmouth
Monrce
Nantucket
Nazszau
Naszsau
MNew Castle
New Hanover

New Haven

Shoreline
T4.64483
165.0014
115.9249
548.0697
194.8057
545.0278
60.30034
760.9103
137.3997

75.0363
193.9743
87.52979
404.3002
1546667
105.5627
163.0436
358.0526
275.8004
2283693
5496443
126.3193
100.8496
372.7881
169.0188
339.0408
339.8031
168.9033
168.4207
694.4106
583.6474
62.81678
8091333
116.8014
132.1283
1376.794

90.2035
289.1361
365.1386
206.7437
283.0461
151.5923

Coastline Shoreline_Coa Elevation
T7.472797 9988874 0.0367
59.05894 2.793842 0.0541
18.52662 6.2537207 0.4994
40.12347 13.67204 0.5663
27.80189 T.006924 0.4094
26.81028 20.32906 0.9254
15.73944 5.831162 0.9137
3448148 2206722 0.0741
4268142 5.219193 0.1372
2.938076 25.53926 01711
38.12371 o.088029 0.1192
10.39013 8.424301 0678
106.2832 3.804073 0.9985
22.92657 6.746179 0.377
23.42039 4507301 0.0873
2462043 6.620939 0.2a68
4.558912 T8.53904 0.4464
36.81543 7.491436 0.2669
52.09939 4383323 0.2396
15.48707 3.049033 0.0a07
29.41781 4293973 0.1399
15.14182 6.660336 0.48938
160.2636 2.326094 0.1548
40.98199 4124221 0.2917
19.07757 17.7717 0.5763
57.74094 6.231334 0.1219
22.30073 T.573808 0.4613
534.28673 4912124 0.90a6
32.70703 21.23122 0.8927
165.1947 3.033088 0.9988

15.5393 4042393 0.0888
12.29954 7.310303 0.1032
39.89371 2927814 0.2063
51.08079 2.5866T7 0.1026
312.0456 4412158 0.9999
60.87543 1481772 0.4973
14.78926 19.55042 0.4354
48.36244 7.550043 0.3241
38.84034 6.610234 0.2068
29.86443 9477701 0.4733
48.80066 3.106039 0.0656
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Bathymetry
2.549612
0.660708
0.800439
0.715613
1.4653937
1.265293
1.362003

0
2.056011
1.733033
0.967138
0.419363
0.339512
0.303907
1.571797

16774
1.196073
1.170967
1.694684
0.612045
2331511
0.248652
0.002621
1.482644
1.294014
0.008637
0.085022
1.391175
1.280906
0.035093
0671913
0.439271
1.483937
0.168533
0.067743
0.397197
1.199401
0.248536
1.534471
0.799823

0.741252

Land_Cover
4.375698
2.727445
3.037187
2.201854
2.178783
2.869078
7.238589
2.961146
4.337218
2.192429
3.192798
3.536433
2512102
4963938
2.198208
2.512102

2.53502
2.727445
2.409149
3.177565
4.519994
2686723
2.603944
2.504928
1.9665835

1.90698
4.215783
2.366791
1.897757
3.714675
3.039434
3.052525
2.792859
4.337218
2.033583
2661781
2.4301635
4375608
3.177563
3.275759

2.061146



NAME

New London
New York
Newport
Newport News
Norfolk
Norfolk
Northampton
Northumberland
Qcean

Onslow

Palm Beach
Pamlico
Pazguotank
Pender
Perquimans
Plymouth
Poguoson
Portsmouth
Prince William
Gueen Anne's
Queens
Richmond
Richmond
Rockingham
Sagadahoc
Salem
Somerset

St. Johns

St. Lucie

St. Mary's
Stafford
Suffolk
Suffolk
Suffolk

Surry

Sussex

Talbot

Tyrrell
Virginia Beach

Volusia

Shoreline
187.7841
87.26567
1247223
59.74461
56.80062
91.29242

560.087
239.0424
4625292
376.0021
273.6029
3212715
141.7664
175.2591
8161134
212.7731
50.99796

475117
40.34601
275.8019
125.0655
55.81461
101.8909
120.4867
327.1801
410.7165
509.3475

28.720

169.0934

305.5407

72.5666

89.10816

962.9691

T77.52311

93.7122!

351.3422

416.4373

163.0851

319.7183

435.0976

]
FD

Coastline

39.80913
4 687237
115.0825
26.03676
13.98678
15.31163

81.1425
4211142
43.82556
30.72011
45.35258
58.17693

31.4161
17.13713
20.26097

109.27
10.14001
6.214234
12.67981
64.56448
16.99782
31.17292
12.04479
19.89589
2260722
37.715048
104.3801
42.20538
21.90297
7432511
12.60567
24.88103
307.7666
8.991096
26.24633
47.11356
54.62872
47.78928
40.51401
51.03251

Shoreline_Coa Elevation

4717108
18.6
1.083764
2294623
4061023
5.962283
6.902511
5.676426
9.473093
12.23961
6.032797
522317
4312539
10.22687
1614117
1947151
5.029379
7645624
3.181911
4271728
7357739
1.790484
8.459332
6.055838
14.47218
10.88986
4879739

5.41922
7.720113
4110868
5.706661

3.58137
3.128894
8.621346
3.230138
7457349
7623051
3.412588
7.891548
8.525891
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0.0646
0.4976
0.1808
0.3267
0.03a8
09727
0.7613
0.3989
0.3233
0.1985
0.9083
0.7887

0.998
0.2103

0.953
0.0996
0.0994
0.8943
0.0249
0.2483
0.4043
0.2862
0.2161
0.0487
0.2152
0.3699
0.8395
0.4769
0.4618

0.309
0.0529
0.4647
0.3693
01144
0.0333

0.243
0.5794
0.9999
0.8308
0.6927

Bathymetry
0.367422
0.40477
0447838
1474633
0128392
1264509
0.840058
1.488177

0.28356
0937973
0.015517
0.814303
1.088272
1.020941
1211639
0.121366
1.380754

1.38607
2 672068
1.6480868
0235517
0.364244
1.740355
0015231
0.023839
1.249479
0926015
0.890073
0.185874
1613785
2626629
0212588
0163143
1493186

1.76117
0.734305
1.563846
0.879195

098738
0.5389358

Land_Cover

4148919
4963938
3.006816
4777217
4756432
8.114066
1.386631
2716733
2409149
2716733
4.519994
2394185
4315989

228858
3.728701
3.052523
5.188257
7492529
3.084844
3.037187
5.541608
4215783
2196949

1.90698
3.002523
5406463
2331003

3.39877
5.692583
2432412
1966583
4337218
2504928
5.2243596
1.591069
3.006816
3.081596
2723024
4718072
2.869078



NAME Shoreline Coastline Shoreline_Coa Elevation Bathymetry Land Cover

Waldo 134.6073 62.00286 2.170986 0.0337 0.008597 0876328
Washington 661.1027 2613514 2529554 0.0434 0 2409149
Washington 72.83781 2494287 2920183 0.8242 1.159964 3.476630
Washington 181.4604 72377 2.507156 0.10a3 0.176922 2961146
Westchester 87.20798 1417214 6.153478 0.0766 0.540231 2792859
Westmoreland 164.9426 4392384 3.753196 0.2605 1.800607 2725425
Wicomico 166.3323 13.72318 1213512 0.5088 0.86144 2783046
Worcester 389.5326 3284088 11.86121 0.5108 0.627149 2686723
York 173.0811 6341317 2.729418 0.0383 0.01027 3.087816
York 111.0149 13.45645 8.24004 0.3689 1.486588 2.49083
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Abbreviations

USEC- United States East Coast

NTHMP- National Tsunami Hazard Mitigation Program

NALCMS- North American Land Change Monitoring System

GEBCO- The General Bathymetric Chart of the Oceans

NOAA- National Oceanic and Atmospheric Administration

FHSU- Fort Hays State University

CN- Connecticut

DE- Delaware

FL- Florida

GA- Georgia

ME- Maine

MD- Maryland

MA- Massachusetts

NC- North Carolina

NH- New Hampshire

NJ- New Jersey

NY- New York
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RI- Rhode Island

SC- South Carolina

VA- Virginia
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Links to Data Sources

http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-

rapideye/- Land Cover data

https://www.opendem.info/download bathymetry.html- Bathymetry data

https://apps.nationalmap.gov/downloader/#/- Elevation data

https://shoreline.noaa.qgov/data/datasheets/medres.html- Shoreline data

https://www.census.gov/data/datasets.html- Census Data
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http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/-
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/-
https://www.opendem.info/download_bathymetry.html-
https://apps.nationalmap.gov/downloader/#/-
https://shoreline.noaa.gov/data/datasheets/medres.html-
https://www.census.gov/data/datasets.html-
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