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ABSTRACT 

Investigation into surface karst formation is significant to hazard prediction, 

hydrogeologic drainage, and land management. Southeast Alaska contains over 600,000 

acres of mapped carbonate bedrock, and some of the fastest recorded karst dissolution in 

the world. The objectives of this study are to develop and compare multiple semi-

automated models to map and delineate karst features from bare-earth LiDAR imagery 

using ArcGIS Desktop 10.7, and to apply a preliminary geostatistical analysis of sinkhole 

morphometric parameters to highlight potential spatial patterns of karst evolution on 

Prince of Wales Island, Alaska. A semi-automated approach of mapping karst features 

provides a dataset that minimizes error from noise while maintaining accurate depression 

location and catchment boundaries. Several semi-automated models with different size 

parameters were compared against field-validated data using vulnerability as a proxy to 

determine the most accurate size threshold model. The model with the most overlap 

agreement was used to determine the morphometrics of karst features identified. This 

study conducted preliminary analysis of morphometric properties derived from the semi-

automated karst feature prediction model to provide context for the geologic controls that 

allow for such large, rapid karstification observed in the region. Although beyond the 

scope of this study, morphometric analysis utilizing this semi-automated approach should 

be the focus of future studies to determine formation mechanisms and factors of karst 

landscape evolution through time. 
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1.0 INTRODUCTION 

Southeast Alaska experiences the fastest recorded karst dissolution and stream 

downcutting in the world (Allred, 2004; White, 2007). The potential to effectively map, 

delineate, and predict karst features and hazards in southeast Alaska offers benefit to 

industrial, recreation, and conservation efforts in the region. The densely forested karst 

landscapes of southeast Alaska comprise systems with complexities stemming from a 

long tectonic and glacial history. An automated karst feature model that predicts locations 

and delineates highly vulnerable karst is a large step in the right direction with regards to 

recognizing the complex hydrology tied to karst landscapes in Alaska. Much of the 

research into karst formation in the region stems from efforts to properly understand and 

manage the important resources associated with karst lands (Baichtal and Swanston, 

1996; Bachtal, 1997; Bryant et al., 1998; Baichtal and Langendoen, 2001; Curry, 2003; 

McClellan et al., 2003; Langendoen and Baichtal, 2004; Prussian and Baichtal, 2004; 

Kovarik et al., 2005; Hendrickson, 2006; Kovarik, 2007; Hendrickson and Groves, 2011; 

Kovarik, 2013; Kovarik, 2013; Kovarik and Baichtal, 2016; Harris, 2020). The use of 

sub-meter resolution Light Detection and Ranging (LiDAR) bare-earth imagery by the 

US Forest Service and US Geological Survey has revealed the karst topography of the 

Prince of Wales Island area in high detail (DGGS, 2013). This bare-earth dataset is 

reconditioned in this study to delineate and incorporate karst features into a GIS database. 

These polygon features are also analyzed using geographical statistics of spatial 

parameters to assess trends in the geomorphological properties. Southeast Alaska consists 

of a large group of islands known as the Alexander Archipelago, as well as the coastal 

strip of mainland that shares a border with Canada to the east. Most of the islands are 
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contained between 55° and 60° north latitude, stretching ~120 miles in width and ~525 

miles in length in the northwesterly-southeasterly direction (Figure 1). The Alexander 

Archipelago comprises hundreds of islands with nearly 10,000 miles of mostly rocky, 

steep coastline (Harris et al., 1974). Prince of Wales Island is the largest island in the 

archipelago with an area of ~2,770 square miles and ~990 miles of coastline (Figure 1). 

Due to the extensive logging history on the island, over 1,500 miles of roads connect 

many parts of the island and allow access to otherwise extremely remote areas.  

 

Figure 1. Mapped Carbonate Bedrock (Red) in Southeast Alaska (Left) and the Prince of 

Wales Island Area (Right). 

 

The karst in the region is considered glaciokarst, a specific type of landscape with 

peculiarities stemming from diverse weathering effects such as glacial and fluvial 

erosion, frost weathering, and mass movements of sediment on soluble bedrock (Veress 

et al., 2019). Karst features present an excellent model for understanding current and past 
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climatic changes and the effects these fluctuations have on landscapes (Veress et al., 

2019). Prince of Wales Island contains structurally complex geology and has been 

heavily impacted by past ice flows due to the Cordilleran Ice Sheet (CIS) that covered 

most of the region with ~3,000 feet of ice during the Wisconsin Glaciation (Harris et al., 

1974; Kienholz et al., 2015; Lesnek et al., 2020). The morphological parameters used for 

analysis of surface karst landscape features include circularity index, azimuth of long and 

short axes, elongation ratio, and area of feature (Day, 1983; Basso et al, 2013; Kobal et 

al., 2015). Patterns and correlations in these parameters offer insight into the dominant 

geologic controls of karstification on the landscape, as well as assist in prediction of 

future geologic hazards.  

This study seeks to: 1) develop a semi-automated, vector-based karst feature 

prediction model to accurately map and delineate surface karst features from high 

resolution bare-earth LiDAR imagery, 2) determine the level of overlap for the karst 

feature prediction model using a comparison of delimited areas recently field-surveyed 

for karst depressions, and 3) derive morphometric characteristics of surface karst 

features. A semi-automated approach of mapping karst features provides a dataset that 

minimizes error from noise while maintaining accurate depression location and 

catchment boundaries. A comparison of overlap is made between the extensive polygon 

dataset created by the karst feature prediction model developed during this study and 

areas recently field-surveyed for karst vulnerability. Morphometric parameters of surface 

karst features, such as circularity index and sinkhole long axis orientation, extracted 

during this study, will show statistical variation through preliminary analysis and 

encourage further research into the geomorphology of the region.  
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2.0 REVIEW OF THE LITERATURE 

2.1 Karst Processes 

 Karstification is a continuous process where acidic water dissolves soluble 

bedrock to create subsurface hydrologic networks (White, 1988; Ford and Williams, 

2007; Palmer, 2007). Karst is a geomorphologic term that can be defined as a terrain with 

distinct hydrology and landforms that result from a combination of high rock solubility 

and well-developed secondary porosity (White, 1988; Ford and Williams, 2007; Palmer, 

2007). Carbonate and evaporite lithologies displaying some karst terrain formation occur 

over ~20% of Earth’s ice-free surface and provide drinking water for ~25% of Earth’s 

population (White, 1988; Ford and Williams, 2007; Palmer, 2007). Karst groundwater 

circulation occurs when there are established connections between recharge points and 

subterranean conduits (White, 1988; Ford and Williams, 2007; Palmer, 2007). While rock 

solubility is important in karst formation, high solubility alone is not enough to produce a 

karst landscape that can sustain an evolving subsurface conduit system (White, 1988; 

Ford and Williams, 2007; Palmer, 2007). The ideal lithology to form classic karst is 

dense, massive carbonate rock with a pure chemical composition and a coarse fracture 

pattern to allow water to permeate through the rock, creating corrosive voids (White, 

1988; Ford and Williams, 2007; Palmer, 2007). A high primary porosity in highly soluble 

rocks often results in poorly formed karst, as the dissolution potential of corrosive water 

is expended near the surface instead of preferentially in subsurface voids (White, 1988; 

Ford and Williams, 2007; Palmer, 2007). A dense and highly soluble rock with low 

primary porosity and mature secondary, or fracture, porosity will result in a more stable 
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karst system capable of evolving and enlarging over time (Figure 2) (Ford and Williams, 

2007; Audrey and Palmer, 2015).  

 

Figure 2. Idealized cross-section of a typical epigenic karst system (Modified from Audra 

and Palmer, 2015). 

 Karst can be viewed as an open system comprising two integrated geochemical 

and hydrological components that act upon the rocks: endokarst and exokarst. The 

subsystems can be split between karst features that form above (exokarst) and below 

(endokarst) the exposed landscape surface (Ford and Williams, 2007). Exokarst forms 

primarily through direct precipitation and includes sinkholes, grikes, losing streams, and 

karren (Figures 2 and 3) (Williams, 2008). Endokarst refers to underground karst, or the 

conduits and voids that form via corrosion of subsurface soluble rock (Figure 2) (Bogli, 

2012). Exokarst features best form in areas of high precipitation acting on crystalline 

carbonate lithology that lies above the water table and contains low primary porosity 

(Williams, 2008). Epikarst, also known as the subcutaneous zone, falls into the exokarst 

Generic Karst System  



6 
 

subcategory and is composed of weathered bedrock that is exposed at the surface or 

immediately beneath soil, if present (Figure 3). Well-formed epikarst lies in the vadose 

zone above the water table and is dominated by transmission rather than storage but 

contains a suspended aquifer that slowly percolates water downward, sustaining distal 

tributaries of caves and perennial springs (Williams, 2008). The preferential pathways for 

water circulation in vadose zones of structurally complex karst areas are folded bedded 

interfaces, while fracture clusters provide through connectivity for water conduits 

(Antonellini et al., 2019). The combination of fracture clusters and continuous water flow 

leads to roof collapse, resulting in large cave chambers or sinkholes (Antonellini et al., 

2019). Since both the surface landscape and subterranean conduits of karst systems 

evolve simultaneously, to understand karst hydrogeology, it is also necessary to 

understand karst geomorphology, and vice versa (Ford and Williams, 2007). 

 

Figure 3. Well-Developed Epikarst on Dall Island, Alaska Showing Intense Nature of 

Surface Dissolution. (Credit: Jim Baichtal) 



7 
 

2.2 Geospatial Analysis of Karst Landscapes 

Geographic Information Systems (GIS) produce layered visual and data outputs 

using spatial and attribute data, GIS software, and tools for modeling and analysis 

(Maguire, 1991; Farkas et al., 2016). This study utilized a Digital Terrain Model (DTM), 

a specific type of Digital Elevation Model (DEM), created directly from a LiDAR point 

cloud using only the last return, or ground points, of the elevation dataset. The conversion 

of generic DEM into a DTM removes nearly all vegetation cover and artificial structures 

and is vital for the analysis of geologic landforms in densely forested areas (Kobal et al, 

2015). Digital models of elevation surfaces comprise extremely large numbers of records 

that represent measurements or estimations of the elevation at various points in space, 

meaning that there is inherent error and uncertainty tied to the continuous dataset as a 

whole (Fisher and Tate, 2006). False depressions historically result from data noise, 

interpolation error, and limited resolution of DEM datasets and need to be removed to 

conduct hydrogeographical analysis (Lindsey and Creed, 2006). For this study, DTM and 

DEM are used interchangeably and refer to the same bare-earth data. 

Depressions in karst, also known as sinkholes, dolines, sinks, basins, or pits, are 

local minimums that have no downslope flow paths to any adjacent cells in a DEM. A 

semi-automated method of karst landscape analysis in GIS has been developed using the 

Hydrology Fill Tool in ArcGIS Desktop (Doctor and Young, 2013). The Fill Tool in 

ArcMap 10.7 uses the priority-flood algorithm, which originated as a tool to remove 

“error”, or areas where streams would intersect closed depressions, creating disjointed 

hydrological networks from DEMs in non-karst areas (Wang and Liu, 2006). The sink-fill 

function subtracts the original DTM from the Fill Tool outcome using Raster Calculator 
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in ArcMap 10.7 to show depth below spill-level of the closed depressions that 

characterize karst topography (Doctor and Young, 2013). This function is important for 

analysis in zones of thick deposits of carbonate bedrock because it indicates where water 

is entering the subsurface. However, as the resolution of DTMs increase, more 

hydrologic sinks are created in error due to falsely identified closed depressions. The 

major difficulty in a semi-automated approach to karst surface mapping stems from the 

need to reduce the number of depressions created from the sink-fill method to better 

represent the actual surface hydrology (Doctor and Young, 2013; Zumpano et al., 2019). 

This includes manually removing falsely identified depressions created from road 

quarries and streams intersecting roadways, which appear as dams without specific raster 

reconditioning (Doctor and Young, 2013). Other basic reduction techniques use a 

minimum feature depth and/or area to filter artificial depressions introduced in the 

LiDAR processing and interpolation.  

A raster sink-fill layer comprises continuous data that show gradual drainage and 

do not properly delineate the shape or perimeter of surface features. Appropriate data 

reduction of the raster fill layer allows for conversion to an accurate polygon layer that 

contains inherent geographic properties and delineated boundaries. A karst feature 

polygon layer enables the derivation of morphometric parameters of depressions such as 

circularity index, elongation ratio, and sinkhole long axis azimuth that can be used as 

quantifiable characteristics to identify patterns and provide insight on the genesis of karst 

landscapes (Day, 1983; Bondesan et al., 1992; Gutiérrez-Santolalla et al., 2005; Al-kouri 

et al., 2010; Basso et al., 2013; Kobal et al., 2015, Šegina et al., 2018). 
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Many factors have been described for karst development, with certain elements 

contributing to higher rates of limestone dissolution (Theilen-Willage et al., 2014). 

Causal factors, such as slope gradient, curvature, lithology, and groundwater table levels 

determine favorability conditions and can be analyzed with DEM overlays in ArcGIS 

(Theilen-Willage et al., 2014). Triggering factors, such as the rate of precipitation and 

water acidity, determine timing of speleogenesis and karstification (Theilen-Willage et 

al., 2014). Depressions, the most common surface karst feature in the region, have been 

mapped using a variety of methods. The most accurate method of surface karst mapping 

to date is to use an automated function to find all closed basins with no surface outflow, 

followed by careful corrections from an expert geomorphologist to show only the features 

attributable to karst processes (Day, 1983; Bondesan et al., 1992; Gutiérrez-Santolalla et 

al., 2005; Al-kouri et al., 2010; Basso et al., 2013; Kobal et al., 2015, Šegina et al., 2018, 

Zumpano et al., 2019). Semi-automated mapping in this manner provides consistent, 

reliable results in terms of feature count, dimensions, and morphometric characteristics of 

surface karst features. (Doctor and Young, 2013; Zumpano et al., 2019). The shape of 

karst depressions is also dependent upon the dominant processes that lead to the 

formation of each particular feature, with coastal processes accelerating the development 

of sinkholes and the dissolution of carbonate rocks (Basso et al., 2013; Baichtal, 2021).  

2.3 Geologic Setting of Southeast Alaska 

Southeast Alaska’s basement geology comprises terranes, regionally fault-

bounded blocks of continental fragments and oceanic islands, that have been accreted 

onto a continent via tectonic drift. Prince of Wales Island is part of the Alexander 

Terrane, one of five subcontinental accreted geologic terranes in Southeast Alaska 
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containing numerous faulted blocks of limestone with intense karstification (Gehrels and 

Berg, 1992; Gehrels and Berg, 1994; Baichtal and Swanston, 1996; Colpron et al., 2007; 

Hendrickson and Groves, 2011; Pecha et al., 2016). These terranes are remnants of land 

masses with distinctive geology that were “smeared” onto present day southeast Alaska 

by oblique collision caused from partial strike-slip faulting and partial subduction of the 

Pacific Plate beneath the North American Plate during the mid-Cretaceous Period 

(Connor, 2014). This accretionary process forms northwest-southeast trending linear 

terranes that comprise the islands and mainland coast of southeast Alaska.  

The majority of karst-forming lithology in the study area comprises the Heceta 

Limestone, a Silurian-aged rock unit, deposited in island intertidal to shallow subtidal 

conditions approximately 5 – 10 north or south of the equator in the paleo-Pacific 

Ocean (Soja, 1993). These sediment deposits represent carbonate sediments accumulated 

on a shallow water platform in an island arc setting (Soja, 1991; Soja, 1993). Large, 

extensive stomatolitic buildups represent quiet, restricted depositional areas that later 

slumped and brecciated with platform collapse relating to eustatic change and active 

tectonism during deposition (Soja, 1993). The Heceta Limestone Formation originated in 

an island-arc setting that accumulated contemporaneously with the Klakas Orogeny of 

the Ludlow epoch in the Silurian Period (Soja, 1993). This island later accreted onto the 

North American Craton during the mid-Cretaceous Period (Connor, 1988; Soja, 1993; 

Gehrels and Berg, 1992; Gehrels and Berg, 1994; Colpron, 2007; Pecha et al., 2016). 

Evidence of carbonate platform development is preserved in the variety of shallow-to-

deep water limestones and interbedded polymictic conglomerates that make up the 

Heceta Limestone exposed on Prince of Wales Island (Soja, 1993). This evidence of 
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platform carbonates and extraordinarily thick (up to 1200 m) limestone deposits in 

Alaska results from a proximity to the paleoequator, as well as conditions favorable for 

widespread carbonate precipitation during the Silurian Period (Soja, 2008). Tectonics 

during island accretion caused thrust faulting and replication of section of the Heceta 

Limestone, leading the formation to originally be identified as over 3000 m in thickness 

(Baichtal, 2021). Due to the complex tectonic events that occurred during sediment 

accumulation and subsequent accretion of the island-arc carbonates, much of the Heceta 

Limestone shows periodic disruptions of carbonate deposition and brecciation events of 

the stromatolitic buildups that form large portions of the formation (Soja, 1990). Much of 

the massive limestone has been recrystallized, resulting in extremely pure, sparite-rich 

carbonate rock. While the strike and dip of limestone deposits in southeast Alaska vary 

from section to section, they typically have a shallow dip of approximately 18 – 40 

degrees (Soja, 1990).  

2.4 Karst Formation on Prince of Wales Island 

The features and three-dimensional nature of karst landscapes result from the 

interaction between geology, climate, topography, hydrology, and biological factors over 

geologic time scales. Alaska’s karst landscapes are of particular interest due to intense 

geologic variation, well-developed karst systems, and the hosting of coastal temperate 

rainforests; a combination of factors seen only in select regions on Earth such as coastal 

British Columbia, New Zealand (South Island), and Tasmania (Aley et al., 1993; Griffiths 

et al., 2002; Ford and Williams, 2007). The oblique collision of the terranes onto the 

North American craton by northwest-southeast trending partial transform faulting created 

fractured bedrock that has been shown to control the formation of karst features (Baichtal 
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and Swanston, 1996). This highly fractured, pure carbonate bedrock, coupled with a mid-

latitude, oceanic climate with high rainfall, leads to extremely rapid karstification (Figure 

4) (Ford and Williams, 2007; White, 2007). The Heceta Limestone is typically massive-

to-thickly bedded, with conduits more often forming along structural breaks as opposed 

to folded beds. Multiple continental and alpine glaciations during the Pleistocene epoch 

(2 mya – 10 kya) have led to large scale erosional and depositional events, resulting in an 

extremely modified landscape (Harris et al., 1974). 

There is evidence that many caves existed prior to the Last Glacial Maximum 

(LGM; ~26 – 19 kya in the area), including the presence of glacial sediments, wood, and 

Pleistocene vertebrate remains found inside the caves (Baichtal and Swanston; 1996, 

Lesnek et al., 2020). However, evidence such as sinkholes formed around glacial 

sediment deposits, indicates either rapid post-glacial karstification or the continuation of 

karstification that occurred prior to the LGM. Evidence for the exact timing for terrestrial 

retreat of the Cordilleran Ice Sheet (CIS) that covered southeast Alaska during the LGM 

is still somewhat scant. Recent 10Be ages from bedrock and glacial erratics, coupled with 

14C ages from raised marine sediments suggest that the easternmost portions of southeast 

Alaska were ice-free by the start of the Holocene, ~11.7 kya (Lesnek et al., 2020).  



13 
 

 

Figure 4. Examples of Typical Surface Karst Features on Prince of Wales Island; 

perspective from the base of a large sinkhole on north Prince of Wales Island (Left) and a 

karst window in a cave (Right). 

 

Alaskan muskegs are areas with poorly drained soils containing acidic (2.1 – 5.5 

pH) waters held in place by slowly decaying sphagnum moss (Harris et al., 1974). The 

low pH waters draining from Alaskan muskegs have led to the fastest recorded carbonate 

stream downcutting rate in the world at 1670 mm/ka (Allred, 2004; White, 2007). 

Muskegs are prevalent in karst areas in southeast Alaska due to deposition and 

compaction of impermeable glacial till in depressions that predate the LGM (Baichtal and 

Swanston, 1996; Lesnek et al., 2020). The existence of till-underlain muskegs in areas of 

carbonate bedrock allows for allogenic drainage of organic acid-rich water directly into 
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karst systems, resulting in accelerated karstification (Harris et al., 1974; Allred, 2004; 

White, 2007). Muskegs most often form relatively flat areas, however, muskegs in 

southeast Alaska have been found to form slopes as steep as 22°, which can provide 

downslope karst systems with consistently large quantities of corrosive runoff (Harris et 

al., 1974). Alaskan karst is also known for sinkholes that coalesce into larger features 

known as uvalas. Uvala is a term that denotes a closed karst depression with compounded 

sinkholes that typically covers a larger surface area, has a more elongate morphology, 

and contains greater depression depth than individual sinkholes.  
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3.0 STUDY AREA 

The study area used for analysis comprises all the mapped karst on Prince of 

Wales Island above 55.65 degrees latitude (Figure 5). The 55.65-degree latitude line is a 

somewhat arbitrary location that roughly defines the northern half of Prince of Wales 

Island, encompassing all of the areas that were manually surveyed for this study. Prince 

of Wales Island comprises one of the more remarkable karst regions in Alaska due to the 

sheer number of karst features present (Figure 1). The mapped karst in the study region 

covers a total area of ~420 km2. The region has been heavily influenced by past tectonics 

and continental glaciations (Baichtal and Swanston, 1996). Southeast Alaska’s climate is 

defined as coastal maritime; characterized by cool, moist summers and moderate winters 

(Köppen, 1984). The low annual temperature ranges and high average precipitation 

categorize southeast Alaska as a temperate rainforest, dominated primarily by western 

hemlock and Sitka spruce with lesser amounts of western redcedar and Alaskan yellow 

cedar that become more scarce further north in the region (Harris et al., 1974). Low 

average temperatures and high rainfall inhibit plant decomposition, resulting in an 

abundance of acidic peatlands, known as muskegs, interspersed throughout forest stands 

(Harris et al., 1974). Southeast Alaska is also known for the abundance of plant life, with 

scarcely any of the land besides vertical cliff faces devoid of vegetation (Harris et al., 

1974). The landscape is characterized by coarse drainage patterns with deep valleys, 

steep slopes, and narrow intervalley ridges, all strongly controlled by bedrock faulting 

and heavily modified by extensive glaciations (Harris et al., 1974). Continental 

glaciations have restructured the surficial geology of nearly the entire study area, 

grinding away and collapsing preexisting karst systems and depositing large amounts of 
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glacial sediments atop and inside of karst features (Baichtal and Swanston 1996). The 

complex geologic and geomorphic history of the region complicates karst feature 

prediction and analysis by covering or exhuming karst features depending on the amount 

of sediment transported and deposited by the ice sheets, the lithology of the island crust 

being overran, the preexisting topography, and numerous other factors that play into the 

evolution of karst in such a geomorphically dynamic area.  

 

Figure 5. Reference Map of the Extent of Bare-Earth LiDAR Imagery in Hillshade for the 

Study Area Portion of Prince of Wales Island. Light blue polygons highlight the mapped 

carbonate bedrock and red polygons delineate the areas ground-surveyed for comparison 

during this project. (Centroid: -133.093430, 56.006933 Decimal Degrees) 
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4.0 METHODS 

4.1 LiDAR Imagery 

A cooperative effort between the US Geological Survey and US Forest Service in 

Alaska collected the high-resolution LiDAR imagery used by this study in the summer of 

2017. This bare-earth DEM dataset is publicly available and can be obtained from the 

Alaska Division of Geological and Geophysical Surveys website in 2 km by 2 km 

imagery tiles (DGGS, 2013). The Tongass National Forest and Sitka Conservation 

Society provided the dataset as a seamless DTM to enable faster and more complete 

analysis. This mosaicked, uncompressed file retains extremely detailed imagery allowing 

for identification of the often small, yet hydrologically significant, karst depressions 

found in the area while allowing for analysis on a large scale (Figure 6). The 32-Bit 

floating-point dataset comprises 0.5 m-pixel resolution, with 194,515 columns and 

296,500 rows in an uncompressed file size of 214.85 GB, although only the Prince of 

Wales Island extent of the dataset is used (Figure 4). The vertical datum for this imagery 

is the mean high tide line for southeast Alaska, with elevations ranging from -0.55 m to 

1022.4 m.  
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Figure 6. Example of a Legitimate but Atypical Karst Feature a) plan and profile map of 

Nervous Rock Pit, a small but hydrologically significant karst feature; b) entrance to 

Nervous Rock Pit (credit: Jim Baichtal); c) map showing depression polygon of Nervous 

Rock Pit with a area of 1.5 m2. 

 

4.2 Projections 

The DTM imagery is in the Geographic Coordinate System NAD 1983, projected 

in the State Plane Alaska 1 FIPS 5001 (US meters) coordinate system (2011). The 

projection specifically used is the Hotine Oblique Mercator (HOM), also known as 

oblique cylindrical orthomorphic. The HOM projection is an oblique rotation of the 

Mercator projection with an azimuth of -36.87 degrees, a center longitude of -133.67 

degrees, and a center of latitude of 57.00 degrees (ESRI, 2019). This projection retains 

(a) (b) 

(c) 
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shape, direction, and local angular relationships, with area and distance increasing in 

distortion with distance from the central standard parallel. The HOM projection is often 

used to map obliquely oriented areas that do not follow a north-south or east-west trend, 

such as southeast Alaska (Figure 7) (ESRI, 2019). The HOM Projection is used for all 

maps and datasets in this study. 

 

Figure 7. Map of the Hotine Oblique Mercator projection created specifically for the 

Panhandle of Alaska due to the oblique angle of the region (ESRI, 2019). 

 

4.3 Karst Feature Delineation and Prediction 

Delineation of karst features in a high relief, densely vegetated terrain has 

changed over the last 35 years from stereoscopic analysis of air photographs, through the 

evolution of handheld GPS, to GIS imagery and reconditioning tools. The acquisition of 

high-resolution LiDAR and its reconditioning to define karst features is in the process of 

changing field reconnaissance from search and discovery efforts to field verification, a 

more focused and significantly less time-consuming process. Field data represents 

collection by karst technicians conducting surveys on proposed Forest Service timber 

harvest units over three field seasons between 2017-2019. A Garmin® Oregon 650t with 

~5 – 10 m accuracy error was used to record tracks and waypoints of karst surveys. These 
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GPS data had 100 ft buffers placed around each karst feature point within ArcMap, 

corresponding with a flagged buffer on the ground, representing high vulnerability (HV) 

karst areas. Inconsistencies exist in the accuracy of data between the vector mapped 

polygons and the implementation on the ground, such as the buffers being applied to 

points as opposed to polygon basins (Figure 10d). 

4.4 Overview of the Semi-Automated Approach 

This method for delineating karst depressions is a semi-automated approach 

comprising several steps: (1) DTM filtering; (2) identifying karst depressions using the 

priority-flood algorithm; (3) removing noise using minimum depth thresholds; (4) 

converting raster data into polygon feature data; and (5) filtering noise and non-karst 

depressions using automated and manual processes. Additionally, geometric attributes for 

each karst depression have been calculated to conduct preliminary analysis on a large 

morphometric dataset.  

4.4.1 DEM Filtering 

All digital elevation data contain some level of uncertainty and error that arises 

during various steps in the DEM creation process, such as data collection, processing, and 

interpolation (Fisher and Tate, 2006). DEM errors can occur in both the elevation or 

vertical (Z) and planimetric or horizontal (XY) coordinates, but focus is typically on 

vertical error, since planimetric error will produce elevation error, but not vice versa. 

Errors in DEMs can generally be grouped into three categories: 1) gross errors, 2) 

systematic errors, and 3) random errors (Liu and Jezek, 1999; Oksanen, 2003, Fisher and 

Tate, 2006). Gross errors result from poor experimental technique or mistakes in the 

measurement process (Oksanen, 2003; Fisher and Tate, 2006). Systematic errors arise 
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during the data collection process and tend to be consistent in magnitude and direction. 

Gross and systematic errors are typically corrected before the DEM is released (Li et al., 

2011). Random errors vary in magnitude and direction, making them difficult to detect, 

especially on large, high-resolution datasets. As a result, random errors are usually left 

uncorrected and are inherent in the DEM. Due to these errors, it is common practice to 

suppress “data noise” by smoothing the DEM before using it to conduct terrain analysis 

and hydrological modeling (Wu et al., 2019). There are numerous ways to smooth DEMs 

with filters; this study utilized the ArcGIS Focal Statistics Tool to apply a three by three-

pixel, rectangle median filter to preserve as much high-resolution data as possible, while 

reducing random error (after Wu et al., 2019). The high relief topography, coupled with 

the high density of karst features in southeast Alaska, requires minimizing the smoothing 

to retain as many of the small, yet hydrologically significant surface karst features as 

possible (Figure 6). 

4.4.2 Identifying Depressions Using Priority-Flood Algorithm 

The high resolution and large size of the bare-earth DEM requires the primary 

steps of the model to be conducted on fragments of the dataset. After generating the 

smoothed DTMs for all parcels of land on Prince of Wales Island with mapped karst 

above the 55.65 degrees latitude line, the Hydrology Fill Tool (i.e., priority-flood 

algorithm) from the ArcGIS Spatial Analyst Toolset identifies and fills all hydrologic 

sinks, resulting in a depressionless DEM (Wang and Liu, 2006; Doctor and Young, 2013, 

Wu et al., 2019). Then, the original, smoothed DEM is subtracted from the filled DEM to 

create a dataset composed entirely of depressions, with each grid cell representing 

depression depth in meters from the spill-line (Doctor and Young, 2013; Wu et al., 2019). 
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Grid cells with zero (0) difference value are automatically eliminated from further 

analysis during this step. 

4.4.3 Removing Noise Using Minimum Depth Thresholds 

Since depressions in a DEM are commonly a combination of artefact, artificial, 

and natural depressions, certain factors can remove small and shallow sinks from the 

sink-fill difference layer to result in a more meaningful dataset (Lindsey and Creed, 2006; 

Wu et al., 2019). The Set Null Tool from the ArcMap Spatial Analyst Toolset is used to 

set minimum depth thresholds (MDTs) of 0.3 m and 0.5 m for overlap comparison. This 

removes every depression with a depth shallower than the input value while retaining all 

depressions that fit the depth criteria. The Set Null Tool works to remove a large amount 

of noise caused by shallow irregularities in the high-resolution data, as well as minimizes 

the dataset size and allows for faster computation of the karst feature prediction model.  

4.4.4 Converting Raster Data into Polygon Feature Data 

Bare-earth DEMs created from LiDAR point clouds comprise continuous, high 

resolution data, with each 0.5 m by 0.5 m grid cell containing up to 20 decimal places. 

Continuous elevation data cannot be directly converted to discrete polygons or contours. 

For the early steps of the semi-automated approach, only the feature boundaries are 

necessary to extract from the sink-fill raster layer. These polygon subsets are later 

appended into one large polygon dataset to be used as a mask to clip the original DEM. 

The depression depth values must be grouped into integer categories before the 

conversion from raster to polygon can take place. The Reclassify Tool from the ArcGIS 

Spatial Analyst Toolset groups raster values into two meter-interval subgroups. A two-

meter defined interval reclassification method allows for retention of depth for each 
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feature. Once reclassified, the Raster to Polygon Conversion Tool creates unsimplified 

polygons that directly overlap with the original raster dataset. These feature polygons 

delineate the immediate catchment basins and contain inherent geographic and 

morphometric attributes that did not exist in the original raster dataset. 

4.4.5 Filtering Noise and Non-Karst Depressions Using Automated and Manual 

Processes 

After conversion, individual attributes and proximal locations further filter noise 

from the karst feature model. Comparisons of models use several combinations of depth 

and area filters for accuracy determinations. Minimum Area Thresholds (MATs) of 0 m2, 

1.0 m2, 2.0 m2, and 3.0 m2 are applied across multiple datasets using ‘select by attributes’ 

on the Area field within ArcMap (Table 1). Zones where the data shows consistent, 

predictable error are located where surface streams meet roads. Unless every road and 

culvert are “burned” or lowered in elevation to not appear as a hydrologic dam, ditches 

and areas where surface streams run through culverts beneath roads will appear as closed 

depressions with no drainage (Figure 8b). While it is possible that some roads were built 

near or overtop of legitimate karst features, the majority of these are erroneous features 

and must be manually removed from the dataset (Figure 8). Gravel quarries are also often 

erroneously identified as depressions and must be manually removed (Figure 8a). A 

‘select by location’ query identifies all polygon features within two meters of the Forest 

Service Roads GIS layer. Not every feature that is selected by this query is deleted; the 

tool is used to detect likely erroneous features, which are then manually examined and 

deselected if they have potential to be karst features. 
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Figure 8. Examples of various false and true positive karst features in raster format with 

an MDT of 0.3 m displayed overtop a LiDAR hillshade; a) false positive features 

interpreted from ditches along a road; b) a false positive feature interpreted from a road 

quarry; c) a minute feature likely stemming from interpolation error that is filtered out 

through an MAT; d) features that fit all criteria for surface karst in this methodology and 

do not get removed from the layer. (Centroid: -133.253280, 56.103747 Decimal Degrees) 

 

4.5 Predictive Model/Field Survey Agreement 

To measure agreement between the karst feature prediction model and karst field 

surveys, karst polygons are buffered with a 100-foot HV buffer and analyzed using the 

Union Tool for overlap with the HV buffers derived from field reconnaissance. The 

Union Tool provides an FID number that describes polygon overlap between the datasets 

being analyzed, which is used to create a field that splits the dataset between three 

criteria: 1) automated buffer only, 2) field-mapped buffer only, and 3) automated and 

field-mapped buffer overlap. Comparisons are made between five karst vulnerability 

prediction models and previously field-mapped HV karst. Model A uses a depression 

MDT of 0.5 m, and Models B, C, D, and E use an MDT of 0.3 m. The five models are 

(a) 

(b) 

(d) 

(c) 
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compared for overlap with karst field surveys using no MAT, and varying MATs (1.0 m2, 

2.0 m2, and 3.0 m2). 

These models are compared to the mapped HV karst clipped by a dataset of areas 

field-surveyed within the past 4 years to determine karst vulnerability with regard to 

timber sales. These units provide a delineated area that has been recently mapped and 

ground surveyed for karst features to determine overlap with the vulnerability models. 

Field-mapped HV karst features include: 1) where surface water directly infiltrates the 

subsurface karst systems, 2) areas directly over known cave passages, 3) areas where 

epikarst relief is greater than 8 ft, and 4) spring resurgences where water exits the 

subsurface. Some areas that were determined HV by ground-surveying, such as spring 

resurgences and 100 ft minimum buffers drawn 0.25-mile upstream from surface stream 

insurgent points required by the Forest Service guidelines, do not appear as HV through 

the automated method of this study. This technique is limited by identifying only closed 

depressions in karst-forming rock, where water can enter the subsurface. Because 

depressions are the most common form of surface karst in the region, this analysis should 

identify a significant portion of the vulnerable karst features. The karst vulnerability layer 

used by the Forest Service has been mapped by evolving methods over the course of 20+ 

years; so, while there are extensive karst areas mapped for HV, only the recently ground 

surveyed, GPS-mapped areas are used for direct comparison due to data integrity 

concerns. 

4.6 Normalizing Polygons by Depth 

Uvalas complicate GIS analysis by encompassing multiple hydrologic 

insurgences into relatively large, singular depressions that must be reconditioned to show 
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the deepest portions of each feature, where water is most likely to enter the subsurface. 

The depth grid codes derived from the original sink-fill raster remain after transitioning 

to the polygon features but do not exhibit the deepest portion relative to each feature. The 

method developed for normalizing sink-fill polygons utilizes the Spatial Analyst Zonal 

Statistics Tool to find the max sink-fill depth for each karst feature. The original sink-fill 

raster is then divided by the zonal statistics max depth using the Raster Calculator Tool to 

normalize the values for each feature, creating a raster with values ranging from 0 – 1.0. 

The normalized raster is then reclassified to values 1 – 10, with 10 being the deepest 10% 

of each feature. Once reclassified, the raster is then converted back to a polygon layer 

using the Raster to Polygon Tool, allowing for selection by attributes. For a layer with 

such large extent and number of features, any different selection of the deepest 

percentage will alter the size and number of insurgences found throughout the layer. For 

example, an uvala with an especially deep insurgence may still not show a secondary 

insurgence if the two vary greatly in relative depth, even if a second insurgence is 

present. This method accurately delineates the portion of each depression that is most 

likely to contain openings to subsurface hydrologic conduits. The deepest 20% of each 

feature was selected as the insurgent area, which is then converted to points using the 

Data Management Feature to Point Tool. Thia point file is then used to create a karst 

feature density map using the Spatial Analyst Point Density Tool with an output cell size 

of ten, circular neighborhood, 200 m radius, and square kilometer area units. 

4.7 Morphometric Analysis 

 An analysis of depression morphometric attributes offers insight into the 

geomorphology of karst systems and how the associated hydrology and hazards will 
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continue to evolve (Williams, 1972). Morphometric properties are derived from the 

dissolved boundary polygons layers created from Model D and Model E, as well as the 

deepest 20% polygon layer created from the normalized Model D layer. These properties 

include area, perimeter, circularity index (CI), length and azimuth of major and minor 

sinkhole axes, and elongation ratio (ER) (Day, 1983; Basso et al., 2013). Spatial data for 

these properties are automatically measured and stored in the dataset attribute table by the 

Minimum Bounding Geometry (MBG) Tool and the Raster to Polygon Tool. The MBG 

Tool is used with the “RECTANGLE_BY_WIDTH” geometry type and the “Add 

geometry characteristics as attributes in the output” option to provide the spatial data 

necessary to derive morphometric properties (Figure 9). The properties are then derived 

from these data and analyzed in Microsoft Excel. Elongation ratio is calculated by taking 

the ratio of sinkhole long axis over sinkhole short axis, providing an objective description 

of sinkhole shape (Day, 1983; Basso et al., 2013). Circularity index is calculated where 

Am is the area and Pm is the perimeter of the depression as defined by the polygon feature 

prediction model (Equation 1) (Kobal et al., 2015). 

 

(Equation 1) 

 

CI provides a quantitative method of calculating “circularity” of individual 

depressions and is defined by the deviation of a polygon from a perfect circle, which will 

have a CI = 1.0. (Kobal et al., 2015). Large depressions and uvalas often have multiple 

𝐶𝑖𝑟𝑐𝑖 =  
𝐴𝑚

𝜋 ∙ (2 ∙
𝐴𝑚
𝑃𝑚

)
2  
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sources of water feeding into them, affecting the shape of depression boundaries 

compared to features with only one source of surface water. 

 

Figure 9. Illustration of measurements used to derive morphometric properties. Modified 

from Kobal et al., 2015. doi:10.1371/journal.pone.0122070.g003 
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5.0 RESULTS AND DISCUSSION 

5.1 Comparison of HV Karst Derived from Prediction Models and Field Mapping 

 Due to the complexity of karst field surveys and high relief topography in the 

region, a one-to-one comparison of karst features is not appropriate for this study. 

Instead, agreement between the HV buffers derived from the various polygon models 

created during this study and previously field-mapped HV buffers is determined (Figure 

10). GPS tracks from karst technicians assessing timber units for vulnerability allude to 

the time-consuming process of thorough karst surveys in southeast Alaska (Figure 10b). 

Inherent differences in manual versus automated methods of determining HV karst result 

in coverages that contain natural disparities. For example, karst springs often resurge 

from the subsurface on slopes and are not detected through automated means since spring 

resurgences typically do not form closed depressions. Sinking streams found in the field 

are also buffered 100 ft for HV 0.25-mile upstream from the point of insurgence, a 

distance that disregards topography and is impossible to fully automate in GIS without an 

extremely detailed hydrology layer. The consequence of these caveats is an inability to 

create a model that agrees 100% with the field-mapped only (FMO) HV karst (Figure 

10). Manual karst mapping in the past also used points instead of polygons to inventory 

karst depressions due to the difficult and time-consuming nature of mapping depression 

boundaries in the field. The ability for automated karst feature mapping to capture and 

delineate depression boundaries results in a more realistic vulnerability map, with larger 

buffers drawn from the edge of depression polygons as opposed to a simple 100 ft buffer 

around a point for each feature (Figure 10d). These larger, polygon-derived HV karst 
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buffers account for a portion of the area that is covered by the automated models and not 

the field-mapped method.  

Figure 10. Subset of Delineated Area Used for Comparison of Overlap; a) Example of 

overlap between the field-mapped HV karst and the HV karst derived from Model D, 

using the 0.3 m MDT, 2.0 m2 MAT clipped to potential timber unit boundaries; b) tracks 

from two karst technicians surveying potential timber units over three days for karst 

vulnerability; c) legend for types of overlap; d) overlap of coverage created from 

automated sink polygons versus field-mapped sink points. (Centroid: -133.093690, 

56.230753 Decimal Degrees) 

 

The five models in this study do not contain extreme variations in the size 

thresholds used to filter the sink-fill layer (Figure 11). While the areas used for 

comparison are considerably smaller in extent than the ~420 km2 study area that was 

mapped for karst features by the automated models, the small variations in threshold sizes 

significantly alter the HV coverage from a land management perspective. The total area 
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of mapped karst clipped to field surveyed units and analyzed for agreement with the 

automated prediction models is 10.1 km2 (Table 1). The amount of HV karst field-

mapped for this clipped extent is about 2.3 km2, or 22.4% of the area; a reasonable value 

considering the complexities of karst topography and hydrology in the region. An 

automated karst feature model that predicts locations and delineates highly vulnerable 

karst is a large step in the right direction with regards to properly understanding and 

managing the important resources associated with karst lands. As previously mentioned, 

none of these models are expected to display complete agreement and none are expected 

to fully cover the field-mapped only portion of HV karst. The automated portion of each 

model is also expected to identify features that were not detected manually due to areas 

that were missed during surveying, features delineated with polygon boundaries instead 

of single points, or depressions that fit the models but do not contain hydrologic 

insurgences. While existing karst feature inventory data are not extensive enough to 

conduct a one-to-one analysis on features determined through manual versus automated 

methods, a comparison of the number of depression polygons detected across the study 

area is used to assess the validity of each predictive model (Table 2). 
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Figure 11. Overlap Percentage Between the Field-Mapped HV (FMHV) Karst and the 

HV Karst Mapped by the Five Automated Models; a) Model A with no MAT and an 

MDT of 0.5 m; b) Model B with no MAT and an MDT of 0.3 m; c) Model C with a 0.3 

m MDT and 1.0 m2 MAT; d) Model D with a 0.3 m MDT and 2.0 m2 MAT; e) Model E 

with a 0.3 m MDT and 3.0 m2 MAT; f) legend for overlap types. 
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Table 1. Mapped Karst Area Compared with the HV Karst Area Derived from the 

Various Models and Methods of Vulnerability Mapping. 

 

 

Table 2. Comparison of Number of Dissolved Depression Polygons Identified Across the 

~420 km2 Study Area for Each Predictive Model.  
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5.2 Model Descriptions and Comparisons 

The layers and overlap types described in the following section are abbreviated 

for clarity: field-mapped high vulnerability (FMHV) describes the dataset of manually 

mapped high vulnerability karst; field-mapped only (FMO) describes areas that were 

deemed HV karst through field mapping and do not overlap with the automated coverage; 

automated only (AO) describes areas that were deemed HV through automated methods 

and do not overlap with the field-mapped coverage. 

5.2.1 Model A 

Model A has the following parameters: no MAT and an MDT of 0.5 m (Figure 

11a). This model overlaps rather poorly with the FMHV layer and exhibits only 18% 

agreement, with an FMO of 57%, the highest FMO value observed throughout all the 

models. Model A encompasses only 58% as much HV karst area as that designated 

through field mapping, while the other models designate at least 14% more area as HV 

than is manually mapped (Table 1). This poor overlap suggests that the 0.5 m MDT is too 

large, misrepresenting the boundaries and depth of karst features in the region and 

underestimating the extent of HV karst without applying an MAT filter.  

5.2.2 Model B 

Model B has the following parameters: no MAT, MDT of 0.3 m (Figure 11b). 

This model overlaps by 29%, exhibiting better agreement relative to Model A. Out of all 

the models analyzed in this study, Model B encompasses the most area coverage, with 

49% of the layer included in the AO portion and the FMO portion reduced from 57% in 

Model A down to 22% in Model B. The results and large extent of this model suggest 
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that much of the FMO portion is a small value due to incidental overlap, where Model B 

covers so much area that it appears to correspond with a large portion of the FMHV. The 

number of dissolved karst features identified between Models A and B also varies 

considerably; with an increase of 54,785 karst features (84%) detected simply by 

decreasing the MDT by 0.2 m (Table 2). The high-resolution nature of LiDAR elevation 

data allows for the detection of small, yet hydrologically significant karst features that 

have not been measurable with previous, lower resolution iterations of bare-earth imagery 

(Figure 6). While it would be ideal to automate the inventorying of features down to this 

size, for each true positive, minute feature identified, potentially thousands of erroneous 

features are detected that stem from errors in imagery processing, interpolation, and slight 

changes in elevation due to fallen trees and other forest debris interpreted as ground 

points (Figure 8). Model B delineates markedly more HV karst area than Model A at 

34.4% but clearly needs some amount of filtering to create a more meaningful predictive 

model, as buffering every minute feature 100 feet generates a coverage with a noticeably 

larger extent than that determined in the field.  

5.2.3 Model C 

Model C seeks to reduce the amount of noise in the prediction model and has the 

following parameters: 0.3 m MDT value and an MAT of 1.0 m2 (Figure 11c). This model 

removes all features that are smaller than 2 by 2 0.5 m-pixels and begins to create a more 

meaningful karst feature layer. The results of Model C do not differ considerably from 

Model B, but the application of an MAT lowers the extent of coverage closer to that of 

the FMHV layer and retains the 29% agreement, suggesting that a 1.0 m2 MAT preserves 

legitimate features and limits noise from the model. It should be noted that, while they 



36 
 

exist, a very limited number of karst features identified in the field are found in 

depressions smaller than 1.0 m2.  

5.2.4 Model D 

Model D has the following parameters: 0.3 m MDT and an MAT of 2.0 m2 

(Figure 11d). Model D categorizes ~28% of the mapped karst as HV, a value closer to the 

FMHV karst percentage than is displayed by Models A, B, and C (Table 1). The 2.0 m2 

MAT used to filter this model removes 33,537 polygons from Model B, which shares the 

same 0.3 m MDT but uses no MAT (Table 2). There are known karst features that fall 

below this 2.0 m2 area threshold, but less than one percent have been previously 

documented in the field (Figure 6). This suggests that, while missing some legitimate but 

atypical features, Model D limits noise created by buffering miniscule potential karst 

polygons for HV and provides a reliable predictive model for karst features.  

5.2.5 Model E 

Model E has the following parameters: 0.3 m MDT and an MAT of 3.0 m2 

(Figure 11e). This model continues to filter out some amount of false positive features, 

but the ratio of true to false features that are removed is higher with this size threshold 

than those used in the previous models (Figure 12). While the mapped extent of HV karst 

for Model E is closer to the FMHV extent relative to the other models, 3.0 m2 is not an 

atypical size for sinkhole depressions in the region and numerous, verified karst features 

are filtered out when this MAT is implemented (Figure 12). However, it should be noted 

that all field-verified features filtered out between models D and E are in old growth 

forest, where LiDAR scanners are able to penetrate the canopy (Figure 12a). Dense 
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young growth forests obscure LiDAR scanners and contribute to zones of lower-

resolution bare-earth data, where it is more likely for the polygons removed with a 3.0 m2 

MAT to be erroneous in origin (Figure 12b). Considering that most of the study area does 

not comprise the extremely dense young growth forest that greatly diminishes the 

efficacy of these predictive models, Model D uses the ideal size threshold combination to 

minimize noise and maximize karst feature prediction. 

 

Figure 12. A comparison between the karst features detected by Models D and E, with an 

MAT of 2.0 m2 and 3.0 m2, respectively; a) beryl green polygons filtered by Model E that 

have previously been verified in an old growth forest area; b) beryl green polygons 

filtered by Model E in a dense young growth forest area that have not been field-verified. 

(Centroid(a): -132.867316, 55.712735 Decimal Degrees) (Centroid(b): -133.132969, 

55.793812 Decimal Degrees) 

 

5.3 Utilization of Model D 

With Model D agreeing most with the FMHV layer while retaining the largest 

number of potential active karst features, the polygons resulting from a 0.3 m MDT and a 

2.0 m2 MAT are normalized and converted to points, using only the deepest 20% of each 

depression (Figure 13). Normalization by depth allows for the identification of the 

deepest portion of each karst depression, which can then be converted to points to 

(a) (b) 
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specifically locate areas where water is most likely to directly infiltrate the subsurface 

(Figure 13). The normalization process is useful for analyzing compound karst 

depressions, or uvalas, typical of developed surface karst in Alaska (Figure 13). While 

the normalized polygons are useful for determining multiple insurgences in singular 

depressions, the local topography within each depression strongly controls the accuracy 

of determinations. Depressions with multiple insurgences that vary significantly in depth 

will not properly capture every area of insurgence when only analyzing the deepest 

twenty percent (Figure 13). Targeting the deepest 20% of the normalized polygon layer 

balances the identification of multiple insurgences in uvalas with properly representing 

the most likely area of insurgence (Figure 13). This process accurately captures the 

deepest portion for each depression and is useful for converting polygons to point 

features to determine points of insurgence and density of surface karst features across the 

study area (Figures 13 and 14). 

 

Figure 13. Example of Normalized Polygons. Normalized polygons capture depth 

relative to each karst depression, with points created at the center of the deepest 20% 

portion for each feature. The large depression is also an example of an exception to the 

proximal road filter, where the road in the northern portion of the figure intersects the 

boundary of a hydrologically active karst feature. (Centroid: -133.097264  56.224265 

Decimal Degrees) 
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Figure 14. Karst feature density created using the Point Density Tool on the Normalized 

Feature-to-Point Layer from Model D, Displayed Over a LiDAR Hillshade. 
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The Point Density Tool creates a dataset of stretched values that display the 

density of karst features across the study area (Figure 14). The highest density of karst 

features identified through this process is 2,769.3 points per square kilometer. Upon 

visual inspection, the highest density areas are located at relatively high elevation areas 

with thick deposits of limestone (Figure 14). These high elevation, thick limestone 

deposits comprise vadose karst that forms from direct precipitation, where water largely 

travels in conduits directly downward, intersecting well beneath the surface of the 

landscape. The highest density of karst features is expected to occur in these areas, as 

they are typically not fed by streams and do not experience flooding, which results in less 

lateral widening than karst depressions at lower elevations. Vadose karst features are also 

deeper with steep sides, making them easier to detect through automated means. Low 

elevation karst depressions also more often form uvalas that are underestimated for 

number of insurgence points, even when normalized for depth. 

5.4 Morphometric Properties of Features Identified by Semi-automation 

Models D and E contain similar datasets, with the only difference comprising the 

polygons filtered between a 2.0 m2 and 3.0 m2 MAT, respectively (Figure 12). Minimum 

bounding boxes that capture feature axes lengths and long axis azimuths are used with 

feature attributes to derive morphometric properties for Models D and E, as well as the 

deepest 20% polygon layer for Model D (Figure 15). There is little variation between the 

morphometric averages derived from these models, with the largest difference found in 

the reduction of the average area by 26.8 m2 from Model D to Model E. The average area 

for the deepest portions dataset from Model D is expectedly much lower than the 

dissolved boundaries for either model. The average ER and CI, however, are quite close 
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to that of the full boundary datasets, with some reduction in the average elongation of the 

smaller polygons (10%) (Table 3). The average CI variations are small between the 

datasets, but the results suggest that the deepest portions of the depressions are more 

circular than the full depression boundaries. Interestingly, the average azimuth is quite 

similar between the two models with different MATs but varies considerably with the 

deepest portion dataset, suggesting an overbearing geologic control on karstification.  

 

Figure 15. Dissolved polygons for the boundaries (Red) and deepest 20% (Green) of karst 

depressions from Model D, as well as the minimum bounding boxes derived with the 

MBG Tool (Black). (Centroid: -133.312429, 56.221999 Decimal Degrees) 
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Table 3. Some averages of morphometric properties derived from the dissolved polygons 

and deepest portion polygons from Model D and the dissolved polygons from Model E. 
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6.0 CONCLUSIONS 

 The high relief topography and complex hydrology of karst landscapes complicate 

karst feature surveying and inventorying in southeast Alaska. A reliable predictive model 

for identifying hydrologically active karst features determined from high-resolution 

LiDAR bare-earth imagery will advance karst management, recreation, conservation, and 

research in the region, while shifting karst surveys from a “search and discover” approach 

to a field-verification approach. This study analyzes a variety of filtration methods to 

determine the ideal size thresholds to minimize the detection of non-karst polygons while 

maximizing the detection of legitimate karst features. While there is some variation in 

predictive accuracy that relies on resolution consistency, the ideal model for karst feature 

detection in the region is Model D, which utilizes an MDT of 0.3 m and an MAT of 2.0 

m2. Model E, with an MDT of 0.3 and an MAT of 3.0 m2, is also a reliable predictive 

model, but this model is shown to filter out legitimate karst features in areas of high-

resolution imagery. For areas of reduced imagery resolution, such as dense young growth 

forest, Model E is a more ideal model to filter out as much noise as possible while 

maximizing the number of legitimate karst features.  

Preliminary analysis of morphometric properties of karst depression polygons on 

Prince of Wales Island, Alaska suggest that further geostatistical investigation will 

provide insight into karst landscape evolution. This preliminary study did not seek to find 

patterns in the morphometrics of identified karst features. Instead, morphometric 

attributes were calculated to show one application of the dataset created with this semi-

automated approach, with preliminary results suggesting that the underlying geology 

controls the development of surface karst features. Future geomorphology studies of this 
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karst area should focus on identifying correlations between various morphometric 

properties to determine the influence of factors such as fractures, faults, underlying 

geology, and surface processes on landscape evolution. These analyses may reveal 

factors that produce the interesting, complex karst features and topography found in the 

region. An accurate karst feature dataset of the size and resolution created during this 

study contains immense potential to progress interest and research in karst landscape 

evolution in a geomorphically active, yet understudied, portion of the world. 
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