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ABSTRACT 

 Convergence is an evolutionary phenomenon wherein distantly related organisms 

independently develop features or functional adaptations to overcome similar 

environmental constraints. Historically, convergence among organisms has been 

speculated or asserted with little rigorous or quantitative investigation. More recent 

advancements in systematics has allowed for the detection and study of convergence in a 

phylogenetic context, but this does little to elucidate convergent anatomical features in 

extinct taxa with poorly understood evolutionary histories. The purpose of this study is to 

investigate one potentially convergent system—the feeding structure of Xiphactinus 

audax (Teleostei: Ichthyodectiformes) and Megalops atlanticus (Teleostei: 

Elopiformes)—using a comparative anatomical approach to assess the degree of shared 

morphospace occupation. X. audax was a large, predatory fish that inhabited the Western 

Interior Seaway (WIS) during the Late Cretaceous and went extinct 66 mya. M. 

atlanticus—the Atlantic tarpon—is a large elopiform fish that inhabits the Gulf and 

Atlantic coasts. Because of structural similarities in their crania and post-crania, M. 

atlanticus is often used formally and informally as a modern analog for X. audax. 

 Landmark-based geometric morphometrics (GM) was applied to determine the 

structural similarity in the feeding morphology of these two fish species. Six X. audax 

and six M. atlanticus specimens were 3D scanned and reconstructed as 3D models, and 

the GM procedure was conducted on in both 2D and 3D treatments. Principal 

components analysis (PCA), discriminant function analysis (DFA), sequential 

agglomerative hierarchical non-overlapping (SAHN) cluster analysis, and a multi-
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response permutation procedure (MRPP) were all performed to quantify the shape 

difference between the 12 specimens.  

 All analyses produce comparable results. X. audax and M. atlanticus differ 

significantly in the structure of their feeding morphology and do not overlap considerably 

in morphospace, casting doubt on the idea that X. audax and M. atlanticus are structurally 

convergent in their feeding morphology. Most notably, there are substantial differences in 

the size and shape of the premaxilla, the length of the maxilla, and the inflection of the 

anterior dentary. The differences in these structures likely relate to the preferred feeding 

habits of each fish, with X. audax preferring large individual prey, and M. atlanticus 

relying on suction feeding to consume smaller schooling prey. These results suggest M. 

atlanticus is a poor modern analog for X. audax with respect to feeding morphology. 
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INTRODUCTION 

 Convergence is an evolutionary phenomenon wherein two or more organisms 

evolve some similarity independently rather than through shared ancestry (Arbuckle & 

Speed, 2016), though other authors have defined convergence in different ways with 

differing levels of specificity (e.g. Stayton, 2015; Ingram & Mahler, 2008; Leander, 

2009; Leander, 2008; Doolittle, 1994; Moore & Willmer, 1997). There are many different 

forms of convergence, including structural convergence (shared morphology), functional 

convergence (shared functional anatomy), developmental convergence (shared 

ontogeny), and sequence convergence (shared amino acid sequences) (Moore & Willmer, 

1997; Doolittle, 1994; Wray, 2002). Numerous systematic approaches have been 

generated to detect the presence and strength of convergence in a phylogeny (Arbuckle & 

Speed, 2016, Speed & Arbuckle, 2016; Stayton, 2015; Arbuckle et al., 2014; Mahler et 

al., 2013; Stayton, 2006). However, because structure is the only observable form of 

convergence in the fossil record, developing methods for directly quantifying allegedly 

shared structure between unrelated organisms also has implications for understanding the 

function of these structures and the life history of the organisms. If the potentially 

convergent structure cannot be quantified in a comparative anatomical context, inferences 

regarding the function of these structures cannot be reliably inferred.

The purpose of this study is to examine one such potentially convergent system—

the structurally similar feeding morphology of Xiphactinus audax Leidy 1870 and 

Megalops atlanticus Valenciennes 1846—using landmark-based geometric morphometric 

(GM) analysis to assess claims of convergence by investigating morphospace occupation. 
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If no significant shape difference is found between the feeding morphology of X. audax 

and M. atlanticus, then it is suggestive that these fish exhibit structural homoplasy in their 

feeding morphology (i.e. convergence or parallelism). While shared ancestry could also 

account for such similarity, qualitative assessment of the feeding structure of non-

megalopid elopomorphs indicate a derived feeding condition for Megalops (discussed 

below). Findings of significant shape difference between the species’ feeding 

morphology do not necessarily refute a homoplastic explanation, as convergence may 

still occur among taxa without morphospace overlap. However, comparing morphospace 

occupation is still a critical component of testing any potentially convergent system. 

Landmark based GM is a series of statistical techniques that quantify the shape of a set of 

objects while retaining the geometric data throughout the analysis—data which are 

typically lost in ‘traditional’ or linear morphometric techniques (Souter et al., 2010; Slice, 

2007; Adams et al., 2004; Parsons et al., 2003; Rohlf & Marcus, 1993). A presupposition 

for employing this technique is that for a particular structure or structural suite to be 

considered structurally convergent, they should show a high degree of morphological 

similarity (i.e. similarity in shape) and therefore overlap in morphospace. Landmark-

based GM has been used to investigate evolutionary divergence among continuous 

populations of fish, amphibians, and mammals (Cureton II & Broughton, 2016; Deitloff 

et al., 2016; Skoglund et al., 2015; Sakamoto & Ruta, 2012; Adams, 2010; Siwertsson et 

al., 2010; Langerhans et al., 2003), and another study by Piras et al. (2010) used 

traditional GM techniques to assess convergence between Gavialis (gharial) and 

Tomistoma (false gharial). Only one study has utilized landmark-based GM to assess 

convergence in a manner similar to the work presented here (Muschick et al., 2012) and 
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no prior studies have employed landmark-based GM techniques to investigate 

convergence in fossil organisms. 

Xiphactinus is an extinct genus of ichthyodectiform fish from the Late 

Cretaceous, with a cosmopolitan distribution ranging from North America to Europe to 

Australia (Schwimmer, 1997; Bardack, 1965). In North America, fossils are known 

primarily from Cenomanian through Campanian outcrops of the Western Interior Seaway 

(WIS), an epicontinental sea that intermittently ranged from the arctic to the modern-day 

Gulf of Mexico (Murray & Cook; 2016; Vavrek et al., 2016; Everhart et al., 2010). 

Xiphactinus fossils can be found as far south as Texas and Mexico (Bardack 1965; 

Stovall, 1933) and as far north as Canada (Vavrek et al., 2016; Bardack, 1965; Stovall, 

1933). These fossils most often belong to the species X. audax (Leidy 1873; Leidy, 

1870). X. audax is one of two currently recognized species of Xiphactinus, though at least 

ten species have been recognized at various times (Bardack, 1965; Hay, 1898). The 

second species, X. vetus, is more commonly found along the Atlantic coast and can be 

differentiated from X. audax by laterally flattened dentition and posterior carinae on the 

teeth—in contrast to the rounded, bullet-shaped teeth of X. audax (Vavrek et al., 2016; 

Schwimmer et al., 1997). X. vetus was not included in this study due to sparse fossil 

material composed almost exclusively of isolated teeth and vertebrae (Vavrek et al., 

2016). 

Ecologically, X. audax was an elongate, pelagic predatory fish that likely preyed 

opportunistically on other large ichthyodectid fish (Beamon, 2001). Stomach contents are 

known from numerous specimens and most often show a prey of Gillicus—another 
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smaller ichthyodectid fish—swallowed head-first. The number and consistency of these 

feeding remnants imply not only preferred prey, but provide insight into the preferred 

feeding style of X. audax (Bardack, 1965, Walker, 2006). 

Megalops is an extant genus of elopiform fish represented by two species—M. 

cyprinoides (oxeye) and M. atlanticus (Atlantics tarpon). M. atlanticus, the focus of this 

study, is native to the Gulf of Mexico and both East and West Atlantic coasts, with a 

small population in the Pacific Ocean via the Panama Canal (Adams et al., 2012). M. 

atlanticus is a popular sport fish and can reach lengths of over 2.0 m (Grubich, 2001). 

They lack teeth as adults and feed primarily on schooling fish and crustaceans using 

suction feeding (Westneat, 2005; Grubich, 2001; Whitehead & Vergara, 1978). M. 

atlanticus is also notable in its complex ontogenetic development, including three distinct 

larval stages during which time offspring share little resemblance to their adult form 

(Wade, 1962).  

 M. atlanticus and X. audax share a number of characteristics in both their cranial 

and post-cranial anatomy. Both species share an elongate body, a deeply-forked caudal 

fin, similarly constructed hemal arches, and a caudally situated dorsal fin—all 

characteristics of an opportunistic ambush predatory lifestyle (Cavender, 1966; Beamon, 

2001; Grubich, 2001; Taverne, 2008; Osborn, 1904). Cranially, both species share an 

antero-caudally compressed skull, deep mandible, and a forward-slung quadrate-articular 

articulation, resulting in a strongly supraterminal mouth—features which imply a life-

history strategy of hunting prey from below (Taverne, 2008; Grubich, 2001; Gregory, 

1933). Despite this configuration, M. atlanticus does still prey on benthic organisms with 
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some frequency (Adams et al., 2012; Whitehead & Vergara, 1978). Similarities in the 

crania and post-crania have resulted in many formal and informal comparisons of the two 

species, with X. audax being referred to as a ‘bulldog fish,’ ‘Cretaceous tarpon,’ or 

‘fanged tarpon’ in both popular media and academic descriptions (Taverne, 2008; Hay, 

1898; pers. obs.). These similarities have not been lost in taxonomic analysis, with 

Gregory (1933), Hay (1898), and Cope (1871a) uniting both genera in the now-defunct 

order of basal teleosts Isospondyli.  

Cope (1871b) originally placed Portheus—later synonymized with Xiphactinus 

(Hay, 1898)—into the family Saurodontidae (Dana et al., 1872). More contemporary 

cladistic analyses have placed Xiphactinus alternatively within Chirocentridae (Bardack, 

1965), which has been actively disputed based on post-cranial characters (Cavender, 

1966), or Ichthyodectidae (Vavrek et al., 2016; Murray & Cook; 2016; Everhart, 2010; 

Patterson & Rosen, 1977; Bardack, 1969; Cavender, 1966; Crook, 1892), which is the 

current consensus. Ichthyodectidae has been alternatively placed within 

Ichthyodectiformes (Bardack, 1969) or Teleostei incertae sedis (Nelson, 1973). Megalops 

belongs to the family Megalopidae within the order Elopiformes (Adams et al., 2012). 

Bardack (1969) united both Elopiformes and Ichthyodectiformes into the superorder 

Elopomorpha, an intermediate grade of basal teleosts between the more basal 

Osteoglossomorpha and the more derived Clupeomorpha (Lauder & Liem, 1983). The 

placement of Xiphactinus into Elopomorpha is dubious, however, as the sole 

synapomorphy supporting the monophyly of this clade is the presence of the 

leptocephalus larval stage—a stage unknown in fossil Xiphactinus material (Grubich, 
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2001). Nonetheless, phylogenetic analysis has consistently supported the basal 

arrangement of both Ichthyodectiformes and Elopiformes, with Arratia and Tischlinger 

(2010) recovering a cladogram placing Ichthyodectiformes as basal to Elopiformes, and 

Maynrick et al. (2015) recovering a cladogram with both orders in a polytomy with each 

other and a third order, Crossognathiformes. In both formal systematic analyses including 

Ichthydectiformes and Elopiformes, both orders fell out basal to other basal ‘grades’ of 

teleosts, including Osteoglossomorpha and Clupeomorpha—contradicting previous 

placements of these orders (Lauder & Liem, 1983). However, neither Arratia and 

Tischlinger (2010) nor Maynrick et al. (2015) incorporated Xiphactinus or other WIS 

ichthyodectiforms into their analyses, instead only including older Jurassic members of 

the clade. How these orders would resolve if WIS ichthyodectids were included is 

unknown. 

The complex taxonomy of these fish is important because the close association of 

Ichthyodectiformes and Elopiformes as basal teleosts may make it tempting to assume the 

shared cranial morphology between X. audax and M. atlanticus is due to shared ancestry. 

However, Elopidae—the sister group of Megalopidae—as well as basal members of 

Elopiformes such as Anaethalion lack many of the seemingly convergent cranial 

characteristics present in Megalopidae mentioned previously, suggesting that these 

features independently evolved within Megalopidae (Maynrick, 2015; Nelson, 1973). 

While this comparison is useful in interpreting the results in the following analyses, it is 

not a true replacement for an ancestral state reconstruction to determine the last common 

ancestor of Xiphactinus and Megalops. Though beyond the scope of this study, an 
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ancestral state reconstruction is a necessary component in assessing the selective 

trajectory of these taxa to differentiate homoplasy from shared common ancestry. 
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MATERIALS AND METHODS 

Institutional Abbreviations 

FHSM: Fort Hays State University’s Sternberg Museum of Natural History, Hays, KS 

AMNH: American Museum of Natural History, New York, NY 

USNM: Smithsonian National Museum of Natural History, Washington, D.C. 

YPM: Yale Peabody Museum of Natural History, New Haven, CT 

NCSM: North Carolina Museum of Natural Sciences, Raleigh, NC 

TNHC: The University of Texas at Austin Biodiversity Center, Austin, TX 

UF: Florida Museum of Natural History, Gainesville, FL 

 

Materials 

 Cranial material of six specimens of Xiphactinus audax (AMNH FF-1951; 

FHSM VP-333; FHSM VP-699; USNM V11554; USNM V-11653; YPM VP-56875) and 

six specimens of Megalops atlanticus (AMNH 211548-SD; NCSM 45757; TNHC 62473; 

UF 10674-S; USNM 21554; USNM 260337) were selected for 2D and 3D reconstruction 

and analysis. Selected specimens were in various states of articulation, from fully 

disarticulated to fully articulated (Table 1). In all cases, analyzed specimens included the 

following elements: braincase (including all articulations relevant to mandibular and 

suspensorial elements), mandibular arch (premaxilla, maxilla, dentary, autangular, 
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dermangular, retroarticular, coronomeckelian), palatal elements (palatine, endo or 

mesopterygoid, metapterygoid, ectopterygoid), and suspensorial elements 

(hyomandibular, quadrate). The symplectic and supramaxillae were excluded due to their 

fragility and tendency not to preserve in fossil specimens. Additionally, when these 

elements were preserved, they were too small and thin to scan and maintain an accurate 

model boundary. Some information about the angle of the symplectic can be inferred 

from the shape and angle of its articulation with the quadrate. The symplectic projects 

ventrally from the hyomandibular and extends into a dorsal groove on the quadrate, 

strengthening it against mandibular stresses (Gregory, 1933). The supramaxillae serve in 

part as the attachment point for the ligamentum maxilla-mandibulare anterius, one of two 

ligaments directly connecting the upper jaw to the lower jaw in teleosts (Vrba, 1968). The 

exclusion of these elements has implications for interpreting feeding mechanics, which 

are further discussed below (see Discussion).  

Only large specimens of both species were used in analysis, with size used as a 

proxy for age to reduced ontogenetic bias during analysis. When the standard length (SL) 

of a specimen was not known, it was estimated from the length of the cranium as a 

proportion of the overall body length (Table 1). All M. atlanticus specimens had SL 

greater than 120 cm, representing the average threshold for sexually mature individuals 

(Adams et al., 2012). M. atlanticus undergo considerable ontogenetic change during 

larval development, but the last stage of their extreme larval metamorphosis occurs 

between 40-130 mm (Wade, 1962). By sexual maturity, M. atlanticus have undergone the 

most substantial phase of their ontogeny and have achieved adult proportions. 
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Approximation of sexual maturity is more difficult to assess in X. audax due to a lack of 

modern ichthyodectid representatives. However, all examined specimens had estimated 

SL greater than 300 cm. While the size threshold for sexual maturity in X. audax is 

unknown, it is presumed for the purposes of this study that such large individuals have 

already undergone a majority of their ontogenetic metamorphosis and have achieved 

adult proportions. Adult proportions might be inferred by analyzing the X. audax 

specimens and making shape comparisons based on specimen size. Such an analysis was 

not performed for this study, however, as the small sample size would prohibit reasonable 

interpretations of differences in maturity versus normal population variation.  

 

Data Collection 

Specimen Digitization 

Specimens were scanned using a Creaform Go!SCAN Model 50 structured light 

3D surface scanner. This model of scanner projects a pattern of visible structured light 

onto the target and uses a pair of cameras to detect deformations in this pattern. The 

associated software, VXelements, construes this deformation into a mesh called a 3D 

scan. This mesh is composed of fundamental polygonal surfaces called triangles. 

VXelements is composed of two modules—VXscan, the module used for specimen 

scanning, and VXmodel, the module used for post-processing of 3D mesh. Scans were 

performed at a resolution of 0.50 mm, the highest resolution possible with the hardware. 

3D models were produced from these scans in Wavefront (.obj) and stereolithography 
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(.stl) formats. Analyses used .stl files due to their universal compatibility with most 3D 

software. Scanning involved taking multiple, individual 3D scans of a specimen from 

multiple angles, then merging these volumes into a single mesh using the Merge function 

in VXscan. A single model consists of one to five individual 3D scans.  

Post-processing of models was performed in the VXmodel module. For most 

elements, post-processing consisted of minor mesh-cleaning using editing tools available 

in the software. This included filling small holes, removing stray data dissociated from 

the main body of the specimen, removing spikes and creases in the mesh, and removing 

non-manifold triangles (polygons that would prevent the model from existing within real 

world geometry). In cases of exceptionally heavy files, a decimation function was 

performed on the offending model. This function removed triangles without altering the 

accuracy of the mesh boundary, reducing file size and processing times during analysis.  

Specimens were also photographed using a Canon EOS Rebel t5 camera with a 

Canon 18-55 mm macro lens. All images were scaled, but lighting conditions varied 

among photographs. These photographs were not used in analysis, but rather for 

reference during reconstruction and landmark placement. 

 

Specimen Reconstruction 

For 3D comparative analysis of the feeding morphology of the two fish species, 

partially complete and disarticulated skulls had to be reconstructed in three dimensions. 

Reconstructions were performed in the VXmodel module of VXelements. This module 



12 
 

permits importation of individual 3D models and adjustment of their relative alignments. 

For disarticulated skulls, models of individual elements were imported and aligned into 

their anatomically correct articulations (based on Gregory, 1933). For fossil specimens 

with obvious taphonomic damage, fractures were reset into correct position along fracture 

planes using the VXmodel editing tools. Irreparable specimens were excluded from 

analysis. In the case of specimens with missing elements, or specimens with only one half 

of the skull exposed due to mounting for exhibition (i.e. FHSM VP-333), elements from 

the available side of the individual were mirrored using the Mirror function in VXmodel 

to generate a complete skull for analysis. Most teleosts, including ichthyodectids and 

megalopids, have bilaterally symmetrical crania as adults (Gregory, 1933), so using well-

preserved, mirrored elements introduced minimal bias.  

In cases of plaster-mounted fossil specimens, parts of some elements were 

obscured by overlying elements—most often portions of the dentary were concealed by 

the overlying maxilla. To generate complete reconstructions, other specimen models were 

used to patch obscured sections, forming composite elements. This was done by trimming 

sections of an appropriately scaled model of the same element from a different specimen 

and merging it into the missing section. Using this method, visible portions of the original 

element (e.g. a visible anterior and posterior portion of a dentary) were united using their 

visible boundaries for reference. Only the obscured sections were reconstructed using this 

method—not broken regions—and inferences regarding the proportions of the original 

elements were not made. Anterior and posterior portions of a reconstructed element 

retained their original relative proportions and were united into a single composite 
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element. This procedure was done to ensure all cranial elements were complete and could 

be assessed in various software (discussed below) which often prohibit the analysis of 

incomplete 3D models. Landmarks were not placed along these composite sections. This 

was done to prevent non-independence in downstream analyses resulting from the same 

element being analyzed twice, which would bias the results and obscure accurate shape 

analysis of the reconstructed specimen. 

To ensure consistent comparison among reconstructed skulls, all skulls had their 

jaws positioned with a standard jaw angle, gape width, and gape size (Fig. 1).  

Establishing and maintaining these proportions ensured that the highly variable mouth 

gape remained consistent relative to the size of the cranium in each specimen, helping 

reduce bias introduced from differences in mouth position. These proportions fall within 

the normal range of jaw motion for both species based on feeding analysis of M. 

atlanticus (Grubich, 2001) and the movement of elements along their articular surfaces in 

X. audax (pers. obs.). These proportions also allow for maximum visibility of mandibular 

and suspensorial elements for both 2D and 3D analysis.  

The upper jaw of all specimens was oriented at an angle of 60° from a plane 

drawn through the center of the occipital condyle. The line forming the angle with this 

plane was drawn from the anteroventral-most point of the premaxilla, to the posterior-

most point of the maxilla, in left lateral view (Fig. 1A). Gape size was measured from the 

anteroventral-most point of the premaxilla to the anterodorsal-most point of the dentary, 

along the axis of rotation of the lower jaw when articulated with the quadrate. Gape size 

was standardized at 0.5 times the length of the neurocranium, as measured from the 
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anterior point of the dermethmoid, to the posterior point of the base of the supraocciptal 

ridge (M. atlanticus) or crest (X. audax) (Fig. 1A).  Gape width was calculated between 

the articular condyles of the quadrates at the ventral-most point of the suspensorium. 

Gape width was standardized at 1.25 times the widest point of the braincase, measured 

from the lateral-most point between the left and right pterotics (Fig. 1B). Cranial 

elements of fossil specimens were never forced into place or digitally altered to fit 

together. 

A left lateral profile image of each reconstructed model was printed, and tracing 

paper was used to create line drawings of the reconstructed specimen. These drawings 

were digitally scanned and sharpened for clarity in Adobe Illustrator CS6. These line 

drawings were used for 2D analysis. 

 

Data Analysis 

A total of four treatments were carried out in this study: 2D analysis, 3D analysis, 

outlier adjusted 2D analysis, and outlier adjusted 3D analysis. A quantile-quantile plot of 

the samples was generated in the R package mvoutlier (R Core Team, 2017; Filzmoser, 

2018) to investigate for outliers in the dataset. Extreme outliers were removed for the 

outlier adjusted analyses (Table 1).  
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Landmark placement 

 Landmark-based GM methods rely on statistical analysis of landmarks carrying 

Cartesian coordinates placed on biologically informative features of specimens. To place 

landmarks in 2D, methods outlined in Zelditch (2012) were followed, using the Stony 

Brook TPS family of software. Line drawings were uploaded into the program tpsUtil 

ver. 1.74 (Rohlf, 2019) to generate a TopSpeed (.tps) file containing image data. This file 

was then imported into the program tpsDig2 ver. 2.31 (Rohlf, 2010), where landmarks 

were placed using the Digitize landmarks function. Fourteen landmarks marked 

homologous points among specimens, concentrated on the mandibular arch, palatal 

elements, and suspensorium, with some placed along the neurocranium to better outline 

the full shape of the skull (Fig. 2A). Selected points generally defined the anterior- and 

posterior-most points of mandibular elements and articulations, and were selected to 

define the shape and relative placement of these elements.  

 The procedure for landmark placement in 3D reconstructed models differed from 

2D landmark placement. Points representing landmarks were manually placed using the 

GM software Landmark ver. 3.0.0.6 (Wiley et al., 2005). Landmark placement was 

mirrored from the 2D analysis, meaning landmarks were place on the same homologous 

points between both treatments. However, 24 landmarks were placed in 3D rather than 

14. Landmarks 1 through 4 were placed along the midline and were not mirrored. 

Landmarks 5 through 14 were mirrored onto the right side of the model (Fig. 2B). The 

spatial Cartesian coordinates for both 2D and 3D landmarks were exported as point (.pts) 
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files, which was then formatted for use in the R package geomorph (R Core Team, 2017; 

Adams & Otarola-Catillo, 2013) following Sokal & Rohlf (2009).  

 

General Procrustes Superimposition and Principal Components Analysis 

 General Procrustes superimposition (GPA) is a statistical procedure used in GM 

where the sum of squared distances among all homologous landmark clusters is 

minimized (Adams et al., 2004). This procedure rotates, translates, and scales specimen 

landmarks and superimposes them, ensuring the effects of size and rotation are accounted 

for during statistical analysis (Adams et al., 2004; Slice, 2007). For both 2D and 3D 

analysis GPA was carried out in the R package geomorph (R Core Team, 2017; Adams & 

Otarola-Catillo, 2013), using the gpagen function. These superimposed data were then 

used to perform a principal components analysis (PCA) using the plotTangentSpace 

function. PCA is an ordination technique where variables in multidimensional space are 

ordinated along arbitrarily generated eigenvectors called principal component axes, or 

just principal components (PC), and compressed into fewer dimensions for ease of 

analysis. PC axes are unitless, linear combinations of the original input variables with 

each axis orthogonal to the last in multidimensional space (Paliy & Shankar, 2016). PC 

axes are organized based on descending order of explained variation between variables: 

PC1 explains the most variation, PC2 the second most, etc. Different PC axes generally 

explain different sources of variation among variables (Zelditch et al., 2012). In this 

study, each point represents an individual specimen within PC space and specimens 

cluster based on similarity in shape. PCA was used to assess the similarity and 
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dissimilarity of the crania of the two species in both 2D and 3D through their relative 

positions in PC morphospace. Deformation grids were generated alongside the 2D PCA 

that illustrate the shape variation defined by a given PC axis and the landmarks 

responsible for that shape variation. In 3D analyses deformation grids could not be 

produced and shape information was instead assessed using 3D point clouds of the 

landmarks, which served a similar function. 

 PC scores (the PC morphospace coordinates of each specimen) and PC loadings 

(the amount of relative variation each PC axis explains) were exported as Microsoft 

Excel Open XML Spreadsheet (.xlsx) files. PC scores for each PC axis were then 

multiplied by their loadings on each axis. These weighted data were formatted following 

Sokal and Rohlf (2009), converted into a tab delimited text (.txt) file, and imported back 

into R for additional analyses. This weighting procedure prevented downstream analyses 

from assuming each PC explained the same amount of relative variation, ensuring an 

emphasis on more meaningful sources of variation and eliminating bias towards less 

meaningful sources of variation. Only PC axes that contributed to the first 90% of 

variation were retained and assessed. In all four treatment, this equated to the first four 

PC axes.  

 

Discriminant Function Analysis 

 Discriminant function analysis (DFA) is an eigenvector technique similar to PCA, 

but generates clusters similar to SAHN clustering (described below). Unlike SAHN 
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clustering, which produces groups based on similarity, DFA looks for pre-existing groups 

in the data and maximizes between-group differences while minimizing within-group 

differences. DFA was performed in the R package MASS (Venables & Ripley, 2002) 

using the function lda. DFA results were used alongside PCA and SAHN to strengthen 

interpretations regarding shape differences in the crania of the two fish species. 

 

SAHN Clustering Analysis 

Sequential, agglomerative, hierarchical, non-overlapping (SAHN) clustering is a 

clustering technique where a similarity or distance matrix is grouped sequentially in a 

manner that minimizes within group differences and maximizes between group 

differences. The output for a SAHN clustering procedure is a dendrogram, a branched 

diagram representing a two dimensional flattening of multidimensional space. Specimens 

are organized within this space based on statistical similarities, similar to an ordination. It 

is read like a cladogram, with branch proximity indicating a closer relationship—in this 

case similarity in geometry (Müllner, 2011). Despite the visual similarities to a 

cladogram, it must be stressed that SAHN clustering is not a systematic technique. SAHN 

clustering was used alongside PCA and DFA to strengthen interpretations regarding 

shape differences in the crania of the two fish species. 

Standard Euclidean distance matrices of both the 2D and 3D data were produced 

in the R package vegan (Oksanen et al., 2019) from the weighted PC data using the 

function vegdist. SAHN cluster analysis was performed on this distance matrix using the 
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hclust function. Average link clustering (UPGMA) was the chosen clustering algorithm. 

UPGMA generates groups by comparing the distance to the next object to be clustered 

from the centroid of previous clusters rather than a single object in a previous cluster 

(Müllner, 2011). This more dynamic method of clustering produces generally better 

results with less chaining. The cophenetic value, which indicates how well the cluster 

matches variation in the original data, was calculated using the cophenetic function. 

Cophenetic values closer to 1 indicate a closer match between the original data and the 

clustered data. 

 

Multi-response Permutation Procedure 

 A multi-response permutation procedure (MRPP) is a nonparametric statistical 

procedure developed to test for differences among groups. This procedure works by 

calculating a delta (δ) value (observed δ) from a distance matrix, then calculating the 

probability of a smaller δ value (expected δ). From these values, the test statistic T, an 

agreement statistic A, and a p value are generated. T describes the separation between 

groups, with more negative values indicating a greater degree of separation. A describes 

the degree of within-group homogeneity, with a value of 1 indicating all specimens 

within a group are identical. Lower values indicate correspondingly less homogeneity, 

with values <0 indicating specimens within groups are less homogenous than would be 

expected by random chance. (McCune & Grace, 2002). 
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 Standard Euclidean distance matrices of both the 2D and 3D data were produced 

following Zimmerman et al. (1985) in the R package vegan (Oksanen et al., 2019) from 

the weighted PC data using the function vegdist. MRPP was carried out using the mrpp 

function. 
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RESULTS 

Outlier Analysis 

Outlier testing on the dataset recovered FHSM-VP 699 and YPM VP-56875 as 

extreme outliers. These specimens were removed from the analysis for both the 2D and 

3D outlier adjusted analysis. TNHC 62473 was also recovered as an outlier, but far less 

so than the previously mentioned specimens. Because of this, TNHC 62473 was retained 

in the outlier adjusted analyses. 

 

Principal Components Analysis 

 The 2D shape analysis shows strong within-species grouping and between-species 

separation in morphospace along PC1 (Fig. 3A). PC1 accounts for 68.2% of the shape 

variation. All specimens of M. atlanticus fall out negatively along PC1 and all specimens 

of X. audax fall out positively along PC1 with no ambiguity in these groupings. The M. 

atlanticus grouping is, however, more tightly clustered along PC1 while the X. audax 

grouping is more diffuse, indicating a weaker in-group association in X. audax. Shape 

variation along PC1 is mediated primarily by differences in the size of the premaxilla, the 

proportions of the quadrate, and the angle of the mandibular symphysis. Positive values 

along PC1 are associated with a broader premaxilla, a relatively shorter quadrate-

metapterygoid articulation, and a caudally deflected mandibular symphysis. Negative 

values along PC1 are associated with a more compressed premaxilla, a longer quadrate-

metapterygoid articulation, and an anteriorly deflected mandibular symphysis. The 



22 
 

position of the posterior maxilla relative to the articular also contributes to variation 

along PC1, with more positive values reflecting a greater distance between the two 

elements. When outliers FHSM VP-699 and YPM VP-56875 are removed, PC1 explains 

73.0% of the shape variation (Fig. 3C). Both the groupings and the sources of shape 

variation along PC1 remain the same between unadjusted and outlier-adjusted analyses. 

The 3D shape analysis shows strong within-species grouping and between-species 

separation along PC1 (Fig. 4A). PC1 accounts for 66.1% of the shape variation. All M. 

atlanticus specimens fall out negatively along PC1 and all X. audax specimens fall out 

positively, emphasizing the strong separation between species groups. The M. atlanticus 

group is tightly clustered along PC1, with TNHC 62473 representing a potential outlier. 

The X. audax group is clustered more diffusely, with FHSM VP-699 and YPM VP-56875 

appearing as notable outliers as in the 2D results. Shape variation along PC1 appears to 

be primarily mediated by differences in the size of the premaxilla, the distance between 

the dermethmoid and the palato-premaxillary articulation, the angle of the symplectic, the 

distance between the posterior maxilla and the articular, the angle of the mandibular 

symphysis, and the breadth of the buccal cavity in anterior aspect. Positive values along 

PC1 are associated with a broader premaxilla, a greater distance between the 

dermethmoid and the palato-premaxillary articulation, a more vertically-oriented 

symplectic articulation, greater distance between the anterior maxilla and the articular, a 

caudally-deflected mandibular symphysis, and a narrower buccal cavity. Negative values 

along PC1 are associated with a dorsoventrally compressed premaxilla, a shorter distance 

between the dermethmoid and the palato-premaxillary articulation, a more anteriorly-
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deflected symplectic articulation, a shorter distance between the posterior maxilla and the 

articular, an anteriorly-deflected mandibular symphysis, and a broader buccal cavity. 

When outliers FHSM VP-699 and YPM VP-56875 are removed, PC1 explains 71.0% of 

the shape variation (Fig. 5A). Both the groupings and the sources of shape variation along 

PC1 remain the same between unadjusted and outlier-adjusted analyses. 

PC2 accounts for 11.0 % of the shape variation in the 2D analysis (Fig. 3B). 

Along PC2, between-species groups did not appear and specimens of M. atlanticus and X. 

audax fall out both positively and negatively along this axis. The M. atlanticus group is 

well-defined, though TNHC 62473 appears as a potential outlier within this species. The 

X. audax group is much more diffuse with M. atlanticus forming a nested group within 

the much broader X. audax group. Shape variation along PC2 appears to be mediated 

primarily by differences in the angle of the dorsal hyomandibular articulation, angle of 

the quadrate-metapterygoid articulation, distance between the posterior maxilla and the 

articular, and the angle of the mandibular symphysis. Positive values along PC2 are 

associated with a shallower angle of the dorsal hyomandibular articulation, a steeper 

angle of the quadrate-metapterygoid articulation, a greater distance between the posterior 

maxilla and the articular, and a caudally deflected mandibular symphysis. Negative 

values along PC2 are associated with a steeper angle of the dorsal hyomandibular 

articulation, a shallower angle of the quadrate-metapterygoid articulation, a shorter 

distance between the posterior maxilla and the articular, and an anteriorly deflected 

mandibular symphysis. When outliers FHSM VP-699 and YPM VP-56875 are removed, 
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PC2 explains 9.7% of the shape variation (Fig. 3D). The between-species grouping 

remains ambiguous, and the sources of shape variation remains largely the same. 

PC2 accounts for 12.1% of the shape variation in the 3D analysis (Fig. 4B). No 

distinct between-species group separation occurs along PC2. M. atlanticus specimens are 

more tightly clustered than X. audax specimens and form a nested group within the more 

diffuse X. audax group. Both species fall out positively and negatively along PC2. Shape 

variation along PC2 is primarily mediated by the size of the premaxilla, the angle of the 

quadrate-metapterygoid articulation, the length and angle of the symplectic, the distance 

between the posterior maxilla and the articular, and the angle of the mandibular 

symphysis. Positive values along PC2 were associated with a larger premaxilla, a steeper 

quadrate-metapterygoid articulation angle, a shorter and more vertically-oriented 

symplectic articulation, a greater distance between the posterior maxilla and the articular, 

and a caudally-deflected mandibular symphysis. Negative values along PC2 are 

associated with a dorsoventrally compressed premaxilla, a shallower quadrate-

metapterygoid articulation angle, a longer and more anteriorly-deflected symplectic 

articulation, a shorter distance between the posterior maxilla and the articular, and an 

anteriorly-deflected mandibular symphysis. When outliers FHSM VP-699 and YPM VP-

56875 are removed, PC2 accounts for 10.5% of the shape variation (Fig. 5B). Between-

species groupings remain indistinct, with M. atlanticus specimens again forming a tighter 

cluster among the more diffuse X. audax specimens. The sources of variation remains 

largely the same along PC2 between unadjusted and outlier-adjusted analyses. There is, 
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however, a less substantial difference in the angle of the mandibular symphysis between 

negative and positive PC2 loadings after removing the outliers. 

 

Discriminant Function Analysis 

 One linear discriminant (LD1) is generated from both the 2D and 3D DFA. DFA 

is able to successfully assign specimens to their correct species group 100% of the time in 

both analyses, indicating a strong degree of separation between the species groups along 

LD1 (Fig. 6A,B). When outliers FHSM VP-699 and YPM VP-56875 are removed, these 

results remained the same (Fig. 6C,D). 

 

SAHN Clustering Analysis 

 The 2D and 3D SAHN clustering analyses both generate dendrograms forming 

two well-separated clusters for M. atlanticus and X. audax (Fig. 7A,B). VP-699 and YPM 

VP-56875 appear as notable outliers in these analyses as well, forming distinct, separate 

pairs within the X. audax cluster. After removing the outliers VP-699 and YPM VP-

56875, the M. atlanticus and X. audax clusters remain strongly separated in both 2D and 

3D analyses (Fig. 7C,D). The 2D unadjusted copehentic value is 0.907, indicating a 

parity of 90.7% between the input data and the generated dendrogram. The 2D outlier-

adjusted cophenetic value is 0.906, indicating a parity of 90.6% between the input data 

and the generated dendrogram. There is notably more chaining in the 2D outlier-adjusted 

dendrogram, and some difference in specimen association between the 2D unadjusted and 
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outlier-adjusted analyses. Specifically, USNM 260337 is less strongly associated with 

USNM 21554 in the outlier-adjusted dendrogram. The cophenetic value for the 3D 

unadjusted analysis is 0.909, indicating a parity of 90.9% between the input data and the 

generated dendrogram. The M. atlanticus and X. audax clusters remain strongly defined 

after removal of VP-699 and YPM VP-56875. The 3D outlier-adjusted cophenetic value 

is 0.900, indicating a parity of 90.0% between the input data and the generated 

dendrogram. There is some change in the association between the 3D unadjusted and 

outlier-adjusted analysis. UF 10674S forms a stronger association with USNM 21554 and 

FHSM VP-333 forms a stronger association with USNM V 11653 in the outlier-adjusted 

analysis. 

 

Multi-response Permutation Procedure 

 All MRPP values are concatenated in Table 2. 2D MRPP analysis shows that the 

degree of separation between groups is greater than that expected by chance, indicating a 

significant difference between the M. atlanticus and X. audax species groups (p = 0.002). 

Species groups also have a high degree of within-group similarity and a high degree of 

between-group separation (A = 0.774, T = -7.34). When the outliers FHSM VP-699 and 

YPM VP-56875 are removed, the difference between species groups remains significant, 

though less significant than the unadjusted analysis (p = 0.006). Species groups in the 

outlier-adjusted analysis also have a greater degree of within-group similarity, but 

reduced between group separation than the unadjusted analysis (A = 0.856, T = -5.76). 

However, between-group separation still remains high in the outlier-adjusted analysis. 
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 3D MRPP analysis also finds a significant difference between the M. atlanticus 

and X. audax species groups (p = 0.002). Species groups again maintain a high degree of 

within-group similarity and between-group separation comparable to the unadjusted 2D 

results (A = 0.758, T = -7.34). When the outliers FHSM VP-699 and YPM VP-56875 are 

removed, there is still significant difference between the species groups, though less 

significant than in the unadjusted analysis (p = 0.005). 3D outlier-adjusted groups also 

show a greater degree of within-group similarity when compared to the unadjusted 3D 

analysis and reduced between-group separation (A = 0.823, T = -5.86).  
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DISCUSSION 

All analyses in both 2D and 3D show discrete morphospace occupation between 

both species (Figs. 3-7). The qualitative dissimilarity illustrated in the PCA, DFA, and 

SAHN cluster analyses is corroborated by the MRPP, which found a significant 

difference (p<0.05) in the shape of the jaw morphology between species among all 

treatments, with the significance of this separation decreasing slightly after the removal 

of the outlier specimens FHSM VP-699 and YPM VP-56975 (Table 2). This means that 

X. audax and M. atlanticus occupy distinct regions of morphospace in relation to feeding 

morphology, corroborated by their known feeding habits (discussed below), suggesting 

M. atlanticus is a poor modern analog for X. audax. These analyses also produce nearly 

identical results in both 2D and 3D treatments. This fact suggests that there is little to no 

advantage to performing landmark-based GM analysis on 3D models versus 2D images 

when interest in quantifying the complexities of 3D structures is minimal.  

The outlier specimens do not represent the largest or smallest X. audax 

individuals in the dataset, and were not notably more taphonomically altered than non-

outlier specimens. This rules out ontogeny or taphonomy as culprits for their status as 

outliers. These specimens may fall within a normal range of intraspecific variation for X. 

audax, which is not being properly represented due to small sample size. Alternatively, 

these specimens may show evidence of some other form of population variation, such as 

sexual dimorphism, or may represent a cryptic species. These conclusions are beyond the 

scope of this study, but may be beneficial future research. 
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The PCA provides further insight into the source of the shape difference between 

species. In all treatments, PC1 represents the sole axis of between-species separation in 

morphospace, with other axes showing shared morphospace occupation. However, >65% 

of the variation was explained by PC1 in all analyses, indicating that a majority of the 

variation described dissimilarity in shape rather than similarity (Figs. 3A; 4A). This 

variation increases to >70% after the removal of the outliers (Figs. 3C; 5A). PC1 has 

eigenvalues ranging between 7.09 and 8.18 (Table 3), making it by far the most 

informative axis to interpret. By contrast, PC2 has eigenvalues ranging between 0.97 and 

1.44. PC3 and PC4 all had values <1. Axes with eigenvalues below 1 explain less 

variation than the input variables, making them generally uninformative. For these 

reasons, axes 3 and 4 will not be discussed further.  

There is consistency in the specific sources of variation along PC1 among all four 

treatments (with the exception of variation resulting from cranial width that could not be 

measured in the 2D analyses). M. atlanticus has a small, quadrangular premaxilla, 

whereas X. audax has a larger, more ovular premaxilla. The premaxilla of X. audax is 

also strongly interdigitated to the maxilla, in contrast to the premaxilla of M. atlanticus 

(Osborn, 1904; Gregory, 1933 pp. 139-141, 143; Bardack, 1965). These differences in 

premaxillary arrangement reflect differences in prey type and acquisition between the 

two fish species. The interdigitated premaxilla-maxilla complex of X. audax produces an 

upper jaw that is more resistant to fracture and dislocation—one of a suite of features 

useful in resisting stresses when feeding opportunistically on large, thrashing prey 

(Beamon, 2001, Bardack, 1965).  The more quadrangular and compressed premaxilla of 
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M. atlanticus contributes to a more gracile upper jaw arrangement reflecting its dietary 

habits, with adults feeding primarily on small schooling fish, worms, and crustaceans 

(Whitehead & Vergara, 1978; Adams et al., 2012).  

The distance between the posterior maxilla and the articular is another feature that 

varies consistently between both species in all treatments along PC1. This difference is 

indicative of a greater length in the maxilla of M. atlanticus, resulting in a maxilla that 

draws closer to the articular in life position. During suction feeding, the maxilla is used as 

a lever to expand the mouth, with longer maxillae indicating stronger suction forces and 

therefore a greater reliance on this method of feeding (Westneat, 2004). The relatively 

shorter and more robust maxilla of X. audax and the less kinetic upper jaw indicates X. 

audax relied less on the suction forces during feeding than does M. atlanticus (Bardack, 

1965). In modern long-toothed fish species, suction feeding is used to aid a biting capture 

and it may be inferred that this style of feeding applied to X. audax as well (Westneat, 

2005). This inference is corroborated by known prey size and feeding behavior of X. 

audax and other related ichthyodectids, which feed on large prey items head-first, much 

like the modern long-fanged Chirocentrus (Bardack, 1965; Luther, 1985; Walker, 2006; 

Everhart et al., 2010). However, no comprehensive study on the feeding biomechanics of 

Xiphactinus currently exists. While they certainly employed suction feeding—a feature 

plesiomorphic to teleosts—this study indicates that suction may not have been as critical 

to the feeding strategy of X. audax as it is to large, predatory, pelagic fish today 

(Westneat, 2004; Westneat, 2005), as evidence both by their relatively akinetic 

premaxillae and relatively short, robust maxillae. 



31 
 

The angle of the mandibular symphysis also varies between species, with X. 

audax having a strong caudal deflection of the anterior dentary, while M. atlanticus has a 

moderate anterior deflection of the anterior dentary forming a chin-like protrusion. The 

caudal deflection present in X. audax is a condition common in extant teleosts bearing 

dental fangs, including members of Chirocentridae, Alestidae, and Cynodontidae 

(Gregory, 1933 pp. 142, 184; Bardack, 1965; Westneat, 2004). This condition is even 

present in the fanged larval forms of M. atlanticus, but is lost during ontogeny (Wade, 

1962), reflecting a lack of adaptive advantage or necessity when large teeth are not 

present. It may be hypothesized, therefore, that this condition in X. audax is related to the 

eruption and accommodation of large anterior thecodont teeth in the dentary and/or prey 

handling. Whether there is some biomechanical advantage to this condition during 

feeding is unclear and requires additional research.  

Also peculiar in the two fish species included in this study is the shape and angle 

of the mandibular symphyses. Both species have relatively deep symphyses, indicating a 

strong connection between the left and right dentary resulting in relatively deep 

mandibles. The presence of such a deep symphysis in M. altanticus is curious as adult M. 

atlanticus do not feed on large or particularly strong prey (Whitehead & Vergara, 1978; 

Adams et al., 2012). This suggests that resisting feeding stresses is a poor explanation for 

such a deep and seemingly akinetic dentary association in M. atlanticus. This deep 

mandible is a feature of adult tarpon and is not present in the toothed or toothless larval 

and subadult forms, refuting any neotenic or ontogenetic explanation. A phlyogenetic 

explanation may be hypothesized, as both extant megalopids (M. atlanticus and M. 
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cyprinoides) share this condition (Wade, 1962). Other elopiforms however, including 

members of the sister family Elopidae and the more basal Anaethalion, lack such a deep 

symphysis. Instead, they exhibit a narrower, more terminal jaw, and a less robust 

mandible (Whitehead & Vergara, 1978; Maynrick et al., 2015). The deep symphysis 

appears to be synapomorphic rather than plesiomorphic to Megalopidae. A final 

hypothesis to consider is that the deep symphysis of Megalops is related to feeding, but 

evolved under a different selective regime than the deep symphysis of X. audax. The deep 

mandible of Megalops increases the buccal capacity of these fish during feeding, 

enhancing their ability to suction feed and intake food during the expansive phase of 

suction feeding. This would further reduce water pressure in the mouth and increase the 

force of the suction created during the expansive phase (Westneat, 2005). This 

explanation is also supported by the relative kinesis of the upper jaw (particularly in the 

ball-and-socket arrangement of the maxillo-palatine articulation) and length of the 

maxilla of M. atlanticus which are both characteristics related to suction feeding 

efficiency (Bardack, 1965; Grubich, 2001; Westneat, 2004; Westneat, 2005). By contrast, 

a deep mandibular symphysis is a sensible solution to resist forces imparted by large prey 

items in X. audax, much like their strongly interdigitated premaxillae discussed above. 

Due to the relative lack of jaw kinesis, obvious reliance on prominent, deeply-socketed 

teeth, and clear preference in large individual prey items, it is unlikely that the evolution 

of a deep symphysis in Xiphactinus was mediated primarily by selection towards suction 

feeding efficiency, as seems to be the case in Megalops. The more parsimonious 

explanation is that the deep symphysis in X. audax is an adaptation for a strengthened jaw 

and to anchor deeply rooted, thecodont dentition for feeding on relatively large, strong 
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prey items. This is further corroborated by the previous results from the size and shape of 

the maxillary and premaxillary elements.  

The similarity in mandibular symphysis depth between X. audax and M. 

atlanticus is noteworthy because it highlights the importance of distinguishing between 

functional convergence and structural convergence. This feature—while likely having 

evolved independently in both Megalopidae and Ichthyodectidae—seems to have 

structurally converged incidentally and not due to shared ecological pressures. While 

there are finite solutions to the same functional problems resulting in organisms trending 

towards the same adaptive structural optima (Ingram & Mahler, 2013; Mahler et al., 

2013; Arbuckle et al., 2014), the same structural solutions may also be used to overcome 

different functional problems. Being cognizant of this fact is valuable when identifying 

convergence or assigning adaptive function to morphological features, particularly those 

known only from fossil organisms. 

Other differences between X. audax and M. atlanticus detected along PC1 were 

inconsistent between the 2D and 3D analysis. However, these sources of variation were 

relatively minor compared to those previously discussed, and may represent statistical 

artifacts or errors in the 3D reconstructions. One source of variation—the expanded 

buccal cavity along negative PC1—was only observable in the 3D analysis. This 

difference between the two species is likely an example of taphonomic bias. In life, it is 

likely that X. audax had a broader, rounded buccal cavity for accommodating prey, but 

the true curvature of the palatal and suspensorial bones of X. audax are unknown and 

were not speculated on for this study. Taphonomic flattening of these elements resulted in 
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reconstructions with buccal cavities that are more narrow and ‘triangular’ than they likely 

were in life. Despite this source of error not being present in the 2D analysis, both 

analyses still found nearly identical results, suggesting the difference in buccal width may 

not have been a major source of variation in the 3D analysis. However, if the proper 

proportions of the buccal cavity of X. audax were known and included in these 

reconstructions, it is likely the 3D between-species shape difference would have been 

reduced. 

In addition to taphonomy, there were other potential sources of error in this study. 

While efforts were made to maintain consistent proportions in the arrangement of cranial 

elements between specimens (Fig. 1), human error remains a concern in any 3D 

reconstruction. However, the concordance of results between the 2D and 3D analyses 

does suggest that error introduced during 3D reconstruction was minimal relative to the 

shape difference between the two species. In analyses where morphological differences 

are more subtle, this type of human error may confound results more egregiously.  

The exclusion of the supramaxillae from the analysis due to their tendency not to 

preserve in X. audax does have implications for the interpretation of differences in 

feeding. Based on known preserved specimens, the supramaxillae of X. audax differ in 

gestalt from that of M. atlanticus, being larger and more ovular compared to the smaller 

and more gracile supramaxillae of M. atlanticus (Gregory, 1933 pp. 139-141, 143; 

Bardack, 1965). The supramaxillae act as an insertion point for the ligamentum maxilla-

mandibulare anterius, which connects the upper jaw to the mandible and assists in the 

opening and closing of the jaw (Vrba, 1968). Considering the large size of the 
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supramaxillae in X. audax, it can be speculated that Xiphactinus had particularly strong 

jaws for clamping down on prey. Because of the obvious differences in shape of the 

supramaxillae between these two species, the results presented here likely underestimate 

the differences between the feeding morphology of X. audax and M. atlanticus. Were the 

supramaxillae included, a greater degree of between-species separation reflecting vastly 

different feeding strategies is predicted. Finally, the particular selection of landmarks in 

this study are arbitrary—as they are in all landmark-based GM studies (Rohlf & Marcus, 

1993)—and different landmark selection may produce different results. Landmarks in 

this study were selected to emphasize the feeding morphology by focusing on 

mandibular, maxillary, and suspensorial elements, with less emphasis placed on 

neurocranial elements or elements with unclear boundaries on specific specimens.  
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CONCLUSIONS 

The purpose of this study is to quantify differences in the shape of the feeding 

morphology of the fish Xiphactinus audax and Megalops atlanticus to assess claims of 

structural convergence between the two species using landmark-based geometric 

morphometrics. Principle components analysis, SAHN clustering, and discriminant 

function analysis all show substantial differences in jaw shape between the two species. 

This is confirmed quantitatively by a multi-response permutation procedure, which shows 

that the species are significantly difference in their shape (p<0.05) and that there is high 

between-species differentiation and high within-group homogeneity. X. audax and M. 

atlanticus occupy discrete regions of morphospace with regard to their feeding structure, 

casting doubt on the claim that they are structurally convergent in this respect. 

Regardless, these results, alongside known feeding habits of these fish, indicate that M. 

atlanticus is a poor modern analog for X. audax. 

Xiphactinus audax has a relatively large premaxilla strongly interdigitated with a 

relatively short maxilla, suggesting a jaw less well-adapted for suction feeding. Stomach 

contents of X. audax corroborate these results (Bardack, 1965), suggesting a much greater 

reliance on strong jaws and teeth to subdue large prey. By contrast, M. atlanticus has a 

much smaller, quadrangular premaxilla and a relatively longer maxilla, indicating a 

strong reliance on suction feeding. These results are, again, corroborated by known 

feeding habits of M. atlanticus as a predator of small, schooling fish (Grubich, 2001). 

Both species have deep mandibular symphyses, though their evolutionary history and 

different ecologies suggest this shared structure evolved to necessitate different functions. 



37 
 

Whereas X. audax likely evolved such a deep jaw to strengthen it against the forces of 

large thrashing prey, and to accommodate large teeth, M. atlanticus may have evolved 

this feature to increase buccal volume and improve suction feeding behavior. These 

results suggest structural convergence may occur even under different functional 

selective regimes. 

At least one anatomical feature—the deep mandibular symphysis—appears to 

have undergone structural convergence between X. audax and M. atlanticus.  

This feature, however, likely evolved under different selective regimes and have not 

converged on a shared function. This conclusion is further supported by inferences 

regarding the feeding behavior of both species. Without knowledge of the last common 

ancestral form of Xiphactinus and Megalops, it is impossible to definitively state that no 

structural convergence has taken place between these species’ feeding morphology, but 

the difference in their morphospace occupation does not support an interpretation of 

structural convergence. Additional research should incorporate ancestral state 

reconstruction, more diverse taxonomic sampling, and a larger sample size alongside 

comparative shape analysis to further examine the possibility and/or extent of structural 

convergence between X. audax and M. atlanticus, as well as other teleosts. This 

comparative anatomical work bears an organic fraternity with systematic studies. 

Including comparative anatomical work to substantiate claims of convergence in 

phylogenetic analysis may lead to more robust phylogenies—an area where potential 

convergence is a confounding factor (Arbuckle & Speed, 2016). Comparative GM 

analysis may also be useful in helping determine informative character states for 
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systematic analysis. This study was a granular look at a single study system, but there is 

much room for a higher resolution approach and a more robust understanding of 

convergence and the part it plays in the evolution of extinct organisms and their 

functional systems. 
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TABLES AND FIGURES 

 

Table 1. Study specimens and their standard length in descending order of size               

(* denotes standard length estimated from cranial material; red text indicates specimens 

removed as outliers). 

Catalog Number Taxon State of Articulation Standard Length (cm) 

AMNH FF-1951 X. audax partially articulated cranium 413* 

FHSM VP-333 X. audax fully articulated 407.4 

FHSM VP-699 X. audax articulated cranium 336* 

USNM V-11653 X. audax articulated cranium 322* 

YPM VP-56875 X. audax articulated cranium 311* 

USNM V-11554 X. audax articulated cranium 301* 

USNM 260337 M. atlanticus partially articulated cranium 268* 

TNHC 62473 M. atlanticus disarticulated 219.1 

NCSM 45757 M. atlanticus disarticulated 215.9 

AMNH 211548-SD M. atlanticus partially articulated cranium 197* 

USNM 21554 M. atlanticus partially articulated cranium 177* 

UF 10674-S M. atlanticus disarticulated 156* 

 

 

Table 2. MRPP analysis values (* denotes significant p-value < 0.05). 

Treatment p-value A T 

2D unadjusted 0.002* 0.774 -7.34 

2D outlier-adjusted 0.006* 0.856 -5.76 

3D unadjusted 0.002* 0.758 -7.34 

3D outlier-adjusted 0.005* 0.823 -5.86 
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Table 3. Explanatory values of the first four PC axes for each treatment. 

    PC 1 PC 2 PC 3 PC 4 

  Proportion of Variance 0.68178 0.10988 0.0683 0.05668 

2D unadjusted Cumulative Proportion 0.68178 0.79166 0.85996 0.91664 

  Eigenvalue 8.18136 1.31856 0.8196 0.68016 

  Proportion of Variance 0.66057 0.12069 0.06935 0.05981 

3D unadjusted Cumulative Proportion 0.66057 0.78126 0.85062 0.91042 

  Eigenvalue 7.92684 1.44828 0.8322 0.71772 

  Proportion of Variance 0.73407 0.0972 0.06095 0.03596 

2D outlier-adjusted Cumulative Proportion 0.73407 0.83128 0.89223 0.92819 

  Eigenvalue 7.3407 0.972 0.6095 0.3596 

  Proportion of Variance 0.70932 0.10474 0.06859 0.03951 

3D outlier-adjusted Cumulative Proportion 0.70932 0.81407 0.88266 0.92217 

  Eigenvalue 7.0932 1.0474 0.6859 0.3951 
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Figure 1. Interpretive line drawings of NCSM 45757 showing measurements for jaw 

angle and gape size in left lateral aspect (A), and gape width in anterior aspect (B). Jaw 

angle (green) is set to 60° from the axis of the occipital condyle (red). Gape size (blue) is 

set to 0.5 times the cranial length (CL). Gape width (purple) is set to 1.25 times the 

cranial width (CW). 
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Figure 2. Example of landmark placement on 2D interpretive line drawing (A) and 3D 

model (B) of AMNH 21154. 2D analysis used 14 landmarks and 3D analysis used 24 

landmarks (14 visible). 
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Figure 3. PC morphospace for all 2D treatments. Black dots and polygons indicate M. 

atlanticus specimens. Red dots and polygons indicate X. audax specimens. Red text 

indicates outlier specimens. Deformation grids indicate shape change along negative 

(upper left) and positive (bottom right) PC X-axis. (A) 2D unadjusted analysis PC1 and 

PC2: PC1 explains 68.2% of the variation; PC2 explains 11.0% of the variation (B) 2D 

unadjusted analysis PC2 and PC3: PC2 explains 11.0% of the variation; PC3 explains 

6.9% of the variation (C) 2D outlier-adjusted analysis PC1 and PC2: PC1 explains 73.0% 

of the variation; PC2 explains 9.7% of the variation (D) 2D outlier-adjusted analysis PC2 

and PC3: PC2 explains 9.7% of the variation; PC3 explains 6.1% of the variation. 
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Figure 4. PC morphospace for the unadjusted 3D treatment. Black dots and polygons 

indicate M. atlanticus specimens. Red dots and polygons indicate X. audax specimens. 

Red text indicates outlier specimens. Point clouds representing landmarks show the 

source of shape variation along the PC X-axis in left lateral (top), anterior (middle), and 

dorsal (bottom) aspects. Shape variation described by negative PC values is shown in the 

left column. Shape variation described by positive PC values is shown in the right 

column. Red arrows point dorsally, green arrows point anteriorly, and blue arrows point 

towards left lateral aspect. (A) PC1 and PC2: PC1 explains 66.1% of the variation; PC2 

explains 12.1% of the variation (B) PC2 and PC3: PC2 explains 12.1% of the variation; 

PC3 explains 6.9% of the variation  
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Figure 5. PC morphospace for the outlier-adjusted 3D treatment. Black dots and 

polygons indicate M. atlanticus specimens. Red dots and polygons indicate X. audax 

specimens. Red text indicates outlier specimens. Point clouds representing landmarks 

show the source of shape variation along the PC X-axis in left lateral (top), anterior 

(middle), and dorsal (bottom) aspects. Shape variation described by negative PC values is 

shown in the left column. Shape variation described by positive PC values is shown in the 

right column. Red arrows point dorsally, green arrows point anteriorly, and blue arrows 

point towards left lateral aspect. (A) PC1 and PC2: PC1 explains 71.0% of the variation; 

PC2 explains 10.5% of the variation (B) PC2 and PC3: PC2 explains 10.5% of the 

variation; PC3 explains 6.9% of the variation. 



56 
 

 

 

Figure 6. DFA plot showing specimen groupings for 2D unadjusted (A), 3D unadjusted 

(B), 2D outlier adjusted (C), and 3D outlier-adjusted (D) treatments along LD1 (Y-axis). 

Black dots represent M. atlanticus specimens and red dots indicate X. audax specimens. 

Red text indicates outlier specimens. 
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Figure 7. SAHN cluster dendrograms for all 2D and 3D treatments. Black boxes indicate 

M. atlanticus specimens. Red boxes indicate X. audax specimens. (A) 2D unadjusted: 

cophenetic value = 0.907 (B) 3D unadjusted: cophenetic value = 0.909 (C) 2D outlier-

adjusted: cophenetic value = 0.906 (D) 3D outlier-adjusted: cophenetic value = 0.900.  
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