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PREFACE 
 

This thesis is written in the style of the Transactions of the Kansas Academy of 

Science, to which a portion will be submitted for publication.
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ABSTRACT 

 

The shortgrass prairie ecoregion in the United States has been reduced to 52% of 

its historical extent, contributing to reduced habitat for native species.  One such species 

is the Burrowing Owl (Athene cunicularia).  The Western Burrowing Owl subspecies (A. 

c. hypugaea) is listed as a Species of Special Concern in nearly every western and 

midwestern state, including Kansas where it is designated as a Tier II Species of Greatest 

Conservation Need.  Habitat destruction due to conversion to cropland, increasing use of 

pesticides, and reduction in burrowing mammal abundance are the primary threats that 

have led to this status.  The objectives of my study were to determine if vegetative 

structure affected Burrowing Owl nest-burrow selection and to determine if UAS 

imagery could be used to efficiently and effectively quantify vegetative structure. 

Vegetative structure and its effect on burrow selection in Burrowing Owl was 

measured in two ways.  First, structure was quantified with an elevated Daubenmire 

cover classification scheme.  Subsequently, I quantified structure with a photogrammetric 

technique in which aerial imagery acquired with the aid of an unmanned aerial system 

(UAS) was used to generate three-dimensional models of the vegetation.   Vegetation 

surrounding both occupied and unoccupied burrows was classified by establishing four 

20-m transects oriented to each cardinal direction and centered at the burrow opening.  

Along each transect, a 1-m x 1-m Daubenmire frame was used to classify vegetation at 2 

m, 5 m, 10 m, and 20 m from the burrow.  A DJI Phantom 4 Pro was flown over each 

burrow to collect a series of overlapping images.  With the imagery from the UAS, three-

dimensional models of vegetative structure were generated.  Visual obstruction by 
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vegetation was estimated with these models.  Burrowing Owl presence increased with 

bare ground cover (Z = 2.29, df = 23, p = 0.022) and decreased with forb cover (Z = -

2.54, df = 23, p = 0.011).  Unoccupied burrows had significantly more obstruction than 

occupied burrows (X2 = 266, df = 9, p < 0.001).  The results of my study suggest that 

imagery collected by UAS can be used as an effective and efficient method of 

characterizing vegetative structure and significantly reduce the amount of time and 

money required to evaluate wildlife and habitat.
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INTRODUCTION 

 

Grasslands cover 4.6 billion ha of land and contain 24% of the vegetation on 

Earth (Sims and Risser 2000).  These areas receive enough precipitation to support 

grasses, but the available water in the soil is not sufficient to support trees.  Although 

closely correlated to mean annual temperature and precipitation, grassland net primary 

productivity ranges from 100-1700 g/m2/yr (Lauenroth 1979).  At the high end, grassland 

productivity is comparable to even the most productive biomes, e.g. 1200 g/m2/yr in 

some tropical rainforests (Martinez Yrizar et al. 1996).    

In the United States, grasslands cover about 300 million ha (Sims and Risser 

2000) and are responsible for between 100-700 g/m2/yr of net primary productivity (Sala 

et al. 1988).  However, grassland areas have been significantly reduced since European 

colonization.  From 1850–1990, 287.2 million acres of grassland west of the Mississippi 

River were converted, primarily to cropland (Conner et al. 2001). 

The range of the shortgrass prairie ecoregion has been reduced to 52% of its 

historical extent (Samson et al. 2004), contributing to reduced habitat for several animal 

species.  The range of the black-tailed prairie dog (Cynomys ludovicianas), one of the 

most negatively affected species, has declined from 30 million ha 200 years ago to 0.5–

0.8 million ha today (Proctor et al. 2006).  The black-tailed prairie dog is a keystone 

species in shortgrass ecosystems. They clip vegetation, which allows several bird species 

to survive in the shorter grass (Agnew et al. 1986), and prairie dog burrows provide 

habitat for hundreds of species. 
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 The Burrowing Owl (Athene cunicularia) is one such species that benefits from 

prairie dogs.  Burrowing Owl presence and density are directly linked to prairie dog 

presence and density (Desmond et al. 2000). Burrowing Owls nest in abandoned prairie 

dog burrows in areas of early plant succession (MacCracken et al. 1985).  The Western 

Burrowing Owl subspecies (A. c. hypugaea) is a grassland specialist, with a distribution 

encompassing most of western North America (Figure 1; Klute et al. 2003).  This 

subspecies has been listed as a Species of Special Concern in several western and 

midwestern states (Sheffield 1997), including Kansas where it is designated as a Tier II 

Species of Greatest Conservation Need (Rohweder 2015).  Habitat conversion to 

cropland, increased use of pesticides, and reduction in burrowing mammals are the 

primary threats that have led to this designation (Klute et al. 2003). 

 In the face of these threats, it is essential for the conservation and management of 

the Western Burrowing Owl that we understand its habitat preferences in areas where the 

species continues to succeed.  The Smoky Valley Ranch in Logan County, Kansas is one 

such area.  The ranch has 1600 ha of habitat managed, in part, for black-tailed prairie 

dogs.  Migratory Burrowing Owls breed and rear nestlings on the property.  This habitat 

is being encroached upon by a native, warm-season grass, purple three-awn (Aristida 

purpurea).  Black-tailed prairie dog and Burrowing Owl densities have been reduced as a 

result.   

Habitats like shortgrass prairies have traditionally been quantified with on-the-

ground protocols that require hours of data collection.  For example, McCracken et al. 

(1985) used a standard Daubenmire frame and canopy cover classification scheme to 
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establish four 20-m transects centered on occupied and unoccupied burrows, one at each 

cardinal direction.  The authors reported that the vegetation within the first 5 m of the 

burrow was significantly different between occupied and unoccupied burrows.  However, 

the vegetative cover classes at 6–10 m and 11–20 m from the burrow did not differ 

between occupied and occupied burrows.  Even with extensive fieldwork, this study was 

unable to produce a fine-scale description of the role of vegetative structure in Burrowing 

Owl nest selection.  In recent years, collection of vegetative structure data has been 

undertaken by remote sensing, and advances in unmanned aerial system (UAS) 

technology hold great promise. 

Unmanned aerial systems have a sensor, a vehicle on which the sensor is carried, 

and some form of ground control station to provide spatial data to the UAS.  More 

advanced UAS have onboard global positioning (Colomina and Molina 2013). 

The potential of UAS for photogrammetry and remote sensing has been 

understood since the early 1980s when radio-controlled platforms integrated with 

navigation and mapping sensors were used to collect high-resolution imagery at low 

altitudes (Wester-Ebbinghaus 1980).  Subsequently, UAS have expanded exponentially.  

In 2005, the number of UAS referenced by Unmanned Vehicle Systems International was 

544.  By 2013, this number had increased to 1708.  Most UAS were developed for and 

used by military entities; however, their use in other applications has grown considerably.  

Military entities made up 73% of the referenced UAS in 2005 but fell to 33% in 2013.  

The fastest growing applications are in civilian and commercial enterprises that require 

precise spatial information that has traditionally been costly or time consuming to obtain, 
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e.g. surveying and construction management.  The increase in UAS development, 

manufacturing, and use by a variety of disciplines has resulted in substantial economic 

effects worldwide.  The global market revenue of UAS was 5,400 M€ (6,131,727,000 

USD) in 2013 and was estimated to rise to 6,350 M€ (7,210,456,750 USD) by 2018 

(Colomina and Molina 2013). 

In both agriculture and environmental monitoring, the use of UAS is rapidly 

expanding.  Monitoring global biodiversity and the health of row crops have traditionally 

been accomplished by the use of large, expensive sensors deployed on manned aircraft or 

satellites.  Unmanned aerial systems provide a more flexible and inexpensive alternative 

(Colomina and Molina 2013).  The primary benefit of UAS in agricultural and 

environmental applications is the replacement of substantial portions of costly and time-

consuming on-the-ground data collection.  These quantitative spatial data are assembled 

through the same photogrammetric methods used to process satellite or other imagery. 

The type of photogrammetry used in my study involves mounting a downward-

facing camera to an aircraft, capturing multiple overlapping photographs (Appendix 1), 

and processing the photographs with computer software (Appendix 2).  Three-

dimensional structure of vegetation or other surface features can then be modeled from 

densified point clouds (Appendix 2).  The primary use of these three-dimensional models 

has been for quantifying the height of agricultural crops to predict yield and biomass 

(Grenzdörffer 2014). 

In addition to monitoring crops and quantifying their vertical structure, UAS have 

been used to monitor wildlife and habitat conditions.  Conserving natural resources 
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requires consistent monitoring so management decisions can be made.  Monitoring 

populations of relatively large organisms often requires expensive, logistically difficult 

aerial surveys with manned aircraft or satellites.  Manned aircraft surveys often require 

funds from external sources, which are inconsistent (Dunham 2012).  Aerial surveys from 

manned aircraft are also dangerous for the operators (Jones 2003, Sasse 2003, Wilkinson 

2007, and Watts et al. 2010).  Imagery acquired by satellites provides relatively high-

resolution imagery, which can be used to monitor large areas of habitat and large 

organisms such as ungulates or aquatic mammals.  However, satellite imagery is 

expensive, susceptible to cloud cover (Loarie et al. 2007), and cannot detect smaller 

organisms or fine-scale changes in habitat. 

 Compared to manned aerial surveys and satellite imagery, UAS collect data with 

high spatial and temporal resolution (Xiang and Tian 2011, Westoby et al. 2012), fly 

below cloud cover (Jones et al. 2006, Xiang and Tian 2011), and are relatively safe for 

the operators (Jones et al. 2006, Watts et al. 2010).  Unmanned aerial systems are smaller, 

less expensive, and provide higher spatial resolution.  These systems have been used to 

count organisms that would be too small to detect with satellite or aerial imagery (Wich 

and Koh 2012 and Grenzdörffer 2013), to calculate Normalized Difference Vegetation 

Indices (NDVI, Bendig et al. 2012), to classify trees to species (Gini et al. 2012), and to 

monitor stream temperatures (Jensen et al. 2012).  One of the most important benefits of 

satellite and UAS imagery is that the imagery provides systematic and permanent records 

that can be assessed by other researchers when new or improved techniques are 
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developed (Hodgson et al. 2013).  These records provide a snapshot of the system at the 

time of data collection that is not preserved in data collected with traditional methods.   

The objectives of my study were to determine if vegetative structure affected 

Burrowing Owl nest-burrow selection and to determine if UAS imagery could be used to 

efficiently and effectively quantify vegetative structure.  I quantified vegetative structure 

with two methods, an elevated Daubenmire vegetative cover classification scheme and 

with a photogrammetric technique in which aerial imagery acquired by a UAS was used 

to generate three-dimensional models of the vegetation.  I predicted that occupied 

burrows would have reduced vegetative structure compared to unoccupied burrows as 

quantified by both methods.  

METHODS 

 

Study Area 

 The Smoky Valley Ranch (SVR) is a Nature Conservancy property in Logan 

County, Kansas that comprised 7290 ha at the time of my study (Figure 2).  The primary 

management regime is cattle (Bos taurus) grazing in a rotational pattern between April 

and October each year.  In addition to cattle, vegetation is also grazed by a herd of 

American bison (Bison bison) and by black-tailed prairie dogs.  Vegetation is also 

influenced by the historic absence of fire, drought, and invasive species.  Invasive and 

encroaching species include woody plants such as salt cedar (Tamarix spp.), Russian 

olive (Elaeagnus angustifolia), eastern redcedar (Juniperus virginiana), and Siberian elm 

(Ulmus pumila).  The herbaceous invasive and encroaching species that occur on the 
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ranch include purple three-awn, musk thistle (Carduus nutans), and bind weed 

(Convolvulus arvensis; Bain 2016).   

Smoky Valley Ranch occurs in the central shortgrass prairie (Bain 2016).  The 

shortgrass prairie ecoregion is classified by a relatively long growing season, sparse 

precipitation, and higher summer temperatures compared to other grassland ecoregions 

(Ricketts et al. 1999).  Smoky Valley Ranch is intersected by the Smoky Hill River 

(Figure 2), which is lined with mature cottonwood trees (Populus sp.).  On SVR, the 

Smoky Hill River only flows during precipitation events but maintains year-round water 

in sporadic depressions. The river separates the property into two distinct ecological 

zones.  Northeast of the river, the majority of SVR, is shortgrass prairie dominated by 

buffalograss (Bouteloua dactyloides) and blue grama (Bouteloua gracilis).  The area is 

broken by chalk bluffs and some rolling hills.  The area southwest of the river is 

primarily sand sage (Artemisia filifolia) prairie near the river, a reseeded plant 

community dominated by sideoats grama (Bouteloua curtipendula), and areas of chalk 

flats that are dominated by little bluestem (Schizachyrium scoparium) and other tallgrass 

species (Bain 2016). 

The black-tailed prairie dog core area comprised approximately 1479 ha (~20% of 

the total area of the ranch; Figure 2), which exceeded the goal of ~600 ha prescribed in 

the management plan for SVR (Bain 2016).  However, the habitat quality in the core area 

was significantly reduced by encroaching monocultures of purple three-awn.  Smoky 

Valley Ranch is in the breeding range of the Burrowing Owl (Figure 1; Poulin et al. 
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2011), and The Nature Conservancy actively maintains prairie dog colonies.  Therefore, 

the ranch was an ideal location for this study.            

Visual Encounter Surveys 

Visual surveys for Burrowing Owls were conducted from 21 April – 31 May 

2018.  Surveys were conducted from 0800 – 1200 and 1600 – 1800 within or near the 

prairie dog core area (Figure 2) to maximize the chance of visual encounters.  During 

visual surveys, I drove an all-terrain vehicle around the edges of prairie dog colonies and 

used binoculars to survey for Burrowing Owls exhibiting defensive behavior.  Burrowing 

Owls were also observed exhibiting behaviors such as preening or burrow maintenance, 

which helped identify occupied burrows (Desmond and Savidge 1996). 

A burrow probe – PeeperTM Video Probe (Sandpiper Technologies, Inc.) – was 

used to obtain visual confirmation of an active nest (Figure 3).  Burrows were considered 

occupied if there were eggs or adults present (Figure 4), nest materials present, or if there 

was obvious debris – shredded cattle dung, avian feces, sticks, etc. – at the entrance to the 

burrow (Figure 5; Desmond and Savidge 1996).  The burrow location was recorded with 

a hand-held global positioning system (GPS; Figure1), and the burrow was given a 

unique identification code. 

Unoccupied Burrow Selection 

 

To determine if vegetative structure had a significant effect on nest selection in 

Burrowing Owls, I classified vegetation around both occupied and unoccupied burrows.  

Unoccupied burrows were located at least 50 m from the area captured by UAS flights 
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for occupied burrows but located within 100 m of the nearest occupied burrow to provide 

a comparison of the habitats available to the owl. 

Unoccupied burrows were selected by generating a list of paired random compass 

directions and random distances.  When an occupied burrow was identified, the next 

direction-distance pair on the list was used to locate an unoccupied burrow.  If no burrow 

was discovered, or in rare cases if there was another occupied burrow at that location, 

then the next direction-distance pair was used until an unoccupied burrow was located.  

The locations of unoccupied burrows were recorded with a GPS and were given labels 

similar to those for occupied burrows. 

Daubenmire Vegetative Structure 

Vegetation surrounding both occupied and unoccupied burrows was classified by 

using a modified Daubenmire classification scheme in which vegetative cover was 

estimated at different heights above the surface to capture variation in vertical structure 

(Sammon and Wilkins 2005).  Four 20-m transects, one oriented to each cardinal 

direction and centered on the burrow opening, were established by placing wood stakes at 

2 m, 5 m, 10 m, and 20 m from the burrow (Figure 6).  These transects were established 

so data collection from both drone flights and Daubenmire protocols could be collected at 

nearly the same time to reduce temporal variability in comparisons.   

Daubenmire classifications were conducted between 08 June 2018 and 12 June 

2018.  A 1-m x 1-m frame constructed from white PVC pipe was substituted for the 

traditional Daubenmire frame (20 cm x 50 cm) because the frames needed to be visible 

from above during UAS flights.  The Daubenmire frame was further modified so 
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vegetative cover could be quantified above the ground.  Within each plot, vegetative 

cover was classified at ground level, 10 cm above the ground, and 20 cm above the 

ground.  Vegetation was categorized as grass (noninvasive), bare ground, litter (standing 

dead and lying dead), purple three-awn, and forb.  Each category was given a 

Daubenmire classification between 0 and 6 (0 = 0% cover, 1 = 1-5% cover, 2 = 6-25% 

cover, 3 = 26-50% cover, 4 = 51-75% cover, 5 = 76-95% cover, 6 = 96-100% cover).  

Before analysis, the Daubenmire classifications were converted to the midpoint 

percentage. 

Vegetative cover for each burrow was averaged for each cover category so each 

cover category would have one value for each burrow.  This was necessary to assess the 

data with a generalized linear model (GLM).  For this GLM, the response variable was 

presence and absence (1 and 0, respectively) of Burrowing Owls.  The predictor variables 

were the average cover (proportion) of each cover category at each height (0, 10, and 20 

cm).  Before performing the GLM, I used a principal component analysis as an 

exploratory tool to identify the variables that would make the greatest contributions to the 

predictive model (Canoco 5.10).  None of the predictor variables were normally 

distributed.  Specifically, all predictor variables were right skewed.  Therefore, all 

predictor variables were transformed with a logarithm transform before analysis.   

All other statistical analyses were conducted in the R statistical software (version 

3.3.2), and the significance level for all statistical tests was α = 0.10 to remain consistent 

with MacCracken et al. (1985).  Before generating a GLM, the predictor variables were 

assessed for collinearity.  Predictors were considered collinear if they had a correlation 
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coefficient greater than or equal to 0.80.  If two or more predictors were collinear, the 

predictor with the largest correlation coefficient with the response variable was retained, 

and the other variable(s) were removed.  The first GLM indicated bare ground and forb 

cover were significant predictors.  Therefore, a second GLM was generated, which 

included only bare ground and forb cover.  This reduced model was assessed for outliers, 

linearity, and normality (le Cessie-van Houwelingen) and was not significantly different 

from the full model, and therefore preferred. 

Finally, the model was cross-validated with a bootstrapping technique (R package 

boot).  This cross-validation is an iterative process in which the data were divided into six 

approximately equal parts, and a model was generated six times.  In each iteration, one of 

the six parts of the data (test sample) was not included, while the other data (training 

sample) were used to generate the model. The predicted occurrence (from the model) was 

compared to the known occurrence of the test sample.  The result of the bootstrapping 

procedure was a percentage of how often the models failed to predict the presence and 

absence of owls. 

Aerial Imagery 

The UAS used to collect aerial imagery was a DJI Phantom 4 Pro (Shenzhen 

Dajiang Baiwang Technology Co., Ltd.) equipped with a 20-megapixel sensor (Figure 7, 

Appendix 1).  Flights were conducted between 0900 – 1500 on 08 June, 09 June, and 12 

June 2018.  The Pix4D Capture mobile application was used to automate each flight 

(Appendix 1).  The four transects around each burrow resulted in a 40-m x 40-m square 

(Figure 8).  To ensure sufficient data density at the edges of the sample area, each 
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automated flight captured an area 50 m x 50 m.  Flight altitude was 30 m above ground 

level (AGL), and image overlap was 80%.  The average relative spatial resolution in each 

image was 0.0083 m/pixel (Appendix 1, Table 1), approximately 120 times finer than 

imagery obtained from commercially available satellites (1 m/pixel).  During UAS 

flights, frames were placed in 20-m transects, in the same locations as during the 

Daubenmire data collection, to provide reference points in the aerial imagery (Figure 6). 

Photogrammetric Surface Structure 

 Aerial imagery was processed in the Pix4D Mapper (version 4.3.31).  The UAS 

collected an average of 110 images per burrow, and the software stitched the images 

together to generate a single, georeferenced mosaic of the area.  During this process, tie 

points (points that are shared among many images) were generated and placed in three-

dimensional space by including their latitude, longitude, and elevation as assigned by the 

GPS onboard the UAS (Appendix 2).  After tie points were generated, the processing area 

for the plot was specified.  The processing area was drawn such that any extraneous tie 

points outside the core 40-m x 40-m plot were removed to reduce the time it took to 

generate three-dimensional products and to improve the quality of those products. 

The tie points within the processing area for each burrow were used to generate a 

georeferenced densified point cloud.  A minimum of six tie points matching between two 

images were required for those images to be included in the densification (Appendix 2).  

Even with these strict parameters, the mean point cloud density was still high (x = 25672 

points/m3; Table 1).  Subsequently, a three-dimensional textured triangle mesh was 

generated from the tie points (Appendix 2); however, these meshes were not georeferenced 
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so they were only used for visual assessment of the plots.  The final product from the aerial 

imagery was a two-dimensional, georeferenced orthomosaic (a high-resolution image of 

the entire burrow plot; Figure 6). 

Visual Obstruction 

 

The aerial imagery and densified point cloud generated from it provided a 

quantitative framework to assess differences between occupied and unoccupied burrows.  

Specifically, I attempted to quantify visual obstruction across the area around each burrow.  

Visual obstruction was estimated from a lidar point cloud (LAS) dataset derived from the 

densified point cloud (Appendix 2) in ESRI ArcMap (version 10.5).  The LAS dataset was 

used to generate a triangulated irregular network (TIN) to represent the surface (vegetative) 

structure (Figure 8).  Within the TIN, triangle vertices that are closer together indicate 

greater variation in elevation, and vertices that are further apart reflect less variation in 

elevation. 

 I designated observer and target points within the TIN surface.  The observer point 

was placed at the burrow opening and was offset 0.25 m above the surface to represent a 

Burrowing Owl looking out from the burrow.  Twenty target points were placed on the 

surface 20 m from the burrow in a circular pattern (Figure 8).  Lines of sight were applied 

between the observer point and each target point.  Along the lines of sight, sections were 

coded as 1 if the “observer” would be able to see the target point at that location and 0 if 

they would not due to obstruction by the TIN surface (Figure 9).  The total obstruction (in 

meters) on each line was calculated. 
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 To determine if there were differences in visual obstruction between occupied and 

unoccupied burrows, I used chi-square goodness of fit tests.  The obstructed distance 

along each transect (n =20) at each burrow was converted to the number of obstructed 

pixels by dividing the obstructed distance (m) by the resolution (m/pixel) of the TIN 

surface (Table 1).  Obstructed pixel counts at unoccupied burrows were used as the 

expected values.  These expected values were used to calculate the expected percentage 

of obstruction at a burrow.  If there were no difference between occupied and unoccupied 

burrows, the obstruction at occupied burrows would be the same as the expected value 

quantified from unoccupied burrows.  Chi-square goodness of fit tests were used to 

compare the total obstructed pixels, the obstructed pixels 0-2 m from the burrow, the 

obstructed pixels 2-5 m from the burrow, the obstructed pixels 5-10 m from the burrow, 

and the obstructed pixels 10-20 m from the burrow to determine if there were any regions 

that were particularly important for burrow selection. 

RESULTS 

 

Burrowing Owl Nests 

 During visual encounter surveys, owls were observed on 21 occasions.  From 

these 21 visual encounters, I identified 15 occupied burrows.  Most occupied burrows 

were discovered outside the prairie dog core area and relatively close to water sources 

(Figure 2).  One occupied burrow (BOO14) might have been depredated.  There was 

evidence of nesting when the burrow was initially discovered, but during the vegetation 

survey on 09 Jun 2018, I observed blood at the entrance to the burrow and adult owls 

were not observed near the burrow again.  The focus of my study was not on the natural 
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history or nesting success of the owls so no data from adults, eggs, or nestlings were 

collected. 

Daubenmire Vegetative Structure 

 The PCA indicated there were four distinct groups of burrows based on 

Daubenmire vegetative structure (Figure 10).  One group was supported by high values 

for bare ground and low values for forb cover, and five of seven burrows in that group 

were occupied.  The next group was supported by high values for litter at all three heights 

and forb cover at 10 cm and 20 cm, and five of seven burrows in that group were 

unoccupied.  The third group was supported by high values for grass cover at all three 

heights, and five of eight burrows in that group were unoccupied.  The final group was 

supported by low values for purple three-awn cover, and there was no clear separation of 

occupied and unoccupied burrows in that group. 

 After removing collinear predictors, the first generalized linear model of 

Daubenmire vegetative structure included bare ground, forb cover, litter cover, purple 

three-awn cover, grass cover 10 cm above the ground, and litter cover 10 cm above the 

ground as predictors.  Only bare ground and forb cover were significant (Z = 2.29, df = 

23, p = 0.022 and Z = -2.54, df = 23, p = 0.011, respectively).  Presence of Burrowing 

Owl increased with increased bare ground, and presence decreased with increased forb 

cover.  Therefore, a reduced model that only included bare ground and forb cover was 

generated. 

 In the reduced model, both bare ground and forb cover remained significant (Z = 

2.47, df = 27, p = 0.014 and Z = -2.48, df = 27, p = 0.013, respectively).  The reduced 
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model was compatible with all diagnostic tests.  The null expectation would be for the 

model to incorrectly identify burrows 50% of the time.  The reduced model here 

incorrectly predicted the presence and absence of Burrowing Owls 13% of the time.  This 

model suggested that the presence of Burrowing Owl increased with bare ground cover 

(Figure 11) and decreased with forb cover (Figure 12). 

Visual Obstruction 

 Unoccupied burrows had significantly more obstruction than occupied burrows 

(X2 = 266, df = 9, p < 0.001; Figure 13).  Unoccupied burrows had significantly more 

obstruction than occupied burrows in the 0-2 m range (X2 = 54.0, df = 9, p < 0.001; 

Figure 14).  In the 2-5 m range, unoccupied burrows were more obstructed than occupied 

burrows (X2 = 179, df = 9, p < 0.001; Figure 15).  Unoccupied burrows had significantly 

more obstruction than occupied burrow in the 5-10 m range (X2 = 334, df = 9, p < 0.001; 

Figure 16).  Finally, in the 10-20 m range, unoccupied burrows had significantly more 

obstruction than occupied burrows (X2 = 198, df = 9, p < 0.001; Figure 17). 

DISCUSSION 

 

Unmanned aerial systems have been successfully implemented to significantly 

reduce the required time and cost of many processes formerly completed by on-the-

ground technicians or manned aircraft.  These include, but are not limited to, counts of 

large organisms, monitoring the health and structure of crops, and classifying trees.  In 

my study, imagery collected by UAS was used to generate three-dimensional models of 

surface structure.  Similar models have been used to quantify the structure of crops and 

other vegetation (Grenzdörffer 2014).  However, fine-scale models of shortgrass 
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ecosystems had not previously been generated by using UAS imagery.  Models of surface 

structure were used here to quantify visual obstruction, replacing data that previously 

would have been collected with a time-consuming protocol such as the Robel method 

(Robel et al. 1970). 

The results of my study suggest that Burrowing Owls selected burrows that were 

surrounded by little vegetation.  Any vegetation that did occur at occupied burrows was 

sparse and low to the ground.  Estimates of Daubenmire vegetative structure suggest that 

Burrowing Owls selected burrows surrounded by high proportions of bare ground.  

However, the relationship between bare ground and presence was relatively weak (Figure 

11) compared to the relationship observed between presence and visual obstruction 

(Figure 13).  The area around occupied burrows had low obstruction and this might be 

based on the ability of Burrowing Owls to see threats approaching the burrow from a 

distance.  Therefore, visual obstruction might be a more direct measure of selection than 

the total vegetation cover or the total cover of specific functional groups. 

Traditional vegetation quantification techniques are prone to temporal bias, due to 

the amount of time they take to complete across large areas.  Daubenmire vegetative 

structure data collection took approximately eight hours over several days and would 

have taken significantly longer had more burrows been occupied.  This time does not 

include the several weeks it took to establish transects at each burrow.  Data collection 

flights with the UAS, on the other hand, were all completed within five days, essentially 

eliminating any temporal bias.  Each data flight (n = 30) took approximately seven 

minutes.  Preparing the plots for flight took approximately 15 minutes each, but this 
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preparation (placing Daubenmire frames as previously described) was only necessary to 

provide reference points for comparison to traditional methods.  Therefore, without that 

preparation, data flights could have all been completed in a matter of hours.  With the 

successful use of UAS to generate models of vegetative structure, on-the-ground data 

collection and the overall time for data collection could be significantly reduced. 

Grasslands and the species that depend on them have declined severely since 

European colonization primarily due to conversion to cropland.  Other anthropogenic 

changes, including climate change, have allowed previously diverse plant communities to 

become increasingly overtaken by one or a few species.  Purple three-awn is one such 

species, and it has become a monoculture in many parts of Smoky Valley Ranch.  The 

Nature Conservancy has struggled to find an effective management plan to slow or stop 

the spread of purple three-awn and other invasive plant species. 

The encroachment of purple three-awn at SVR has reduced prairie dog density 

and forage quality for cattle and bison.  For birds, however, particular plant species often 

do not affect species diversity (MacArthur and MacArthur 1961) or habitat selection 

choices (Delise and Savidge 1997).  The presence of purple three-awn appeared not to 

affect nest selection in analyses of vegetative structure based on the Daubenmire 

classifications.  However, plant species were not identified in the models of surface 

structure generated by photogrammetry from UAS imagery.  Therefore, purple three-awn 

could have been one of many plants that contributed to visual obstruction.  A focus of 

future research should be to collect UAS imagery wherein plants could be identified to 
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determine if Burrowing Owls make selection choices based on the visual obstruction of 

specific plants. 

Purple three-awn did not negatively affect selection in my study.  However, 

continued expansion of purple three-awn will further reduce black-tailed prairie dog 

abundance and the forage quality for grazers.  Eventually, this will negatively affect 

Burrowing Owls because reduced grazing will result in increased vegetative structure and 

increased visual obstruction.  Therefore, purple three-awn management should continue 

so Burrowing Owls continue to have nesting habitat in one of the few remaining areas of 

native prairie in their breeding range. 

Because visual obstruction best predicted the presence of Burrowing Owls, visual 

obstruction should be the focus of future studies focused on nest-burrow selection in 

Burrowing Owl.  However, data collection by traditional techniques such as the Robel 

method is time-consuming and labor-intensive.  Therefore, other methods, such as 

photogrammetry with UAS imagery, should be explored further.  My study was 

conducted in a shortgrass prairie ecosystem, which had relatively sparse and short 

vegetation.  Even in this environment, UAS imagery provided resolutions that were 

sufficient to generate models that predicted nest-burrow selection based on visual 

obstruction.  Accordingly, these techniques would likely be applicable in other 

ecoregions and for investigating the selection choices of other organisms. 

Grassland nesting birds are the most seriously threatened group of birds in North 

America due to the conversion of grassland to cropland.  Encroachment by woody plant 

species due to fire suppression also negatively affects these birds (Hunter 1990, Lymn 
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and Temple 1991).  Grassland ecosystems are highly variable due to grazing, inconsistent 

precipitation, and fire (Winter et al. 2005).  As a result, birds that nest in these systems 

experience spatial and temporal variation in abundance (Igl and Johnson 1997) and 

success (George et al. 1992).  Due to this variation in grassland habitat and the resulting 

fluctuations in grassland bird abundance and nesting success, consistent and extensive 

fieldwork must be completed to monitor populations and their habitat.  Most of this 

fieldwork involves on-the-ground quantification of vegetative structure and visual 

obstruction. Incorporating UAS generated imagery might substantially reduce required 

fieldwork if three-dimensional surface models are adequate predictors of selection 

choices made by birds that nest in grasslands. 

The potential uses of UAS for wildlife monitoring extend beyond grassland 

ecosystems and extend beyond avian abundance, selection, and success.  Models of 

vegetative structure could be used to quantify available forage for grazing mammals or to 

quantify escape-cover from predators for many species, not just birds.  Forest ecosystems 

are less variable than grasslands and require less frequent monitoring, but UAS could be 

used to quantify vegetative structure and visual obstruction for forest-dwelling organisms 

and reduce the cost of fieldwork. 

Imagery collected by UAS also might be used in an integrative process with 

imagery collected at other scales, similar to how satellite imagery of different resolutions 

is used to quantify vegetative indices (Houborg et al. 2015).  Commercial satellite 

imagery is expensive and often impeded by cloud cover, but it allows the analysis of 

larger areas than UAS.  For investigations that include large extents, satellite imagery 



 

 

21 

 

could be used to provide a general understanding of how the area changes over a long 

time, and UAS might be used to monitor the area more frequently and provide high 

temporal resolution in areas of concern. 

However, with the successful application of UAS imagery to determine the effect 

of vegetative structure on Burrowing Owl nest-burrow selection in this study, The Nature 

Conservancy and Smoky Valley Ranch should have a much more efficient and data-rich 

vegetation monitoring program in which they will be able to use UAS imagery to 

determine areas in need of significant intervention to improve the quality of habitat 

available to all species. 

Similar UAS monitoring programs could be implemented at federal wildlife 

refuges, state wildlife areas, and national parks to significantly reduce the amount of time 

and money it takes to monitor threatened plant and wildlife species.  As the time a UAS 

can remain in flight increases, as the quality of sensors improves, and as the power of 

modeling software increases, the value of UAS for the fields of wildlife conservation and 

management will continue to increase.   

The potential benefit of more efficient and accurate data collection with UAS has 

already begun to replace field collection methods and will continue to do so in the future. 

To fully maximize the potential of UAS, wildlife managers should be trained in UAS-

based data collection techniques.  In this way, people that work on the land every day and 

have an innate understanding of the system can contribute to the quality of data collected 

and form management plans that will provide the most benefit to as many of the species 

that have been negatively affected by human-induced change as possible.  
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Burrow Plot Size (ha) 3D Densified Points/m3 Resolution (m/pixel) 

BOO1 0.8382 27122.9 0.0083 

BOU1 0.7658 32092.1 0.0077 

BOO2 0.8574 24392.0 0.0085 

BOU2 0.8425 25323.8 0.0084 

BOO3 0.7997 24441.5 0.0083 

BOU3 0.7666 28816.4 0.0079 

BOO4 1.0959 25527.1 0.0088 

BOU4 1.1111 21178.7 0.0093 

BOO5 0.8175 24502.6 0.0084 

BOU5 0.8271 22092.3 0.0084 

BOO6 0.8372 25029.6 0.0085 

BOU6 0.8656 23039.4 0.0088 

BOO7 0.8561 20497.2 0.0088 

BOU7 0.8099 22239.4 0.0082 

BOO8 0.8322 27167.7 0.0082 

BOU8 0.7622 31365.4 0.0077 

BOO9 0.7899 27126.0 0.0080 

BOU9 0.7796 27037.7 0.0079 

BOO10 0.7840 22672.0 0.0082 

BOU10 0.7316 25192.7 0.0075 

BOO11 0.8318 23419.9 0.0086 

BOU11 0.7912 26495.6 0.0082 

BOO12 0.8036 28345.4 0.0080 

BOU12 0.8011 24697.4 0.0081 

BOO13 0.7490 28230.2 0.0078 

BOU13 0.7482 31507.9 0.0077 

BOO14 0.7881 28746.7 0.0079 

BOU14 0.7826 27858.2 0.0078 

BOO15 0.9426 20566.6 0.0091 

BOU15 0.8559 23427.8 0.0086     

Mean 0.8288 25671.7 0.0083 

Table 1. Plot Size, Point Density, and Resolution for All Burrows. 

The plot size for the UAS flight at each burrow (both occupied and occupied) along with the 

number of three-dimensional densified points per cubic meter and the final resolution of the 

georeferenced orthomosaic generated by Pix4D Mapper.  The resolution (m/pixel) was used to 

convert the total obstructed distance at each burrow to total number of obstructed pixels in the 

visual obstruction analyses. 
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Figure 1. Burrowing Owl Species Range.   
The species range of the Burrowing Owl (Athene cunicularia), indicating breeding, 

nonbreeding, and year-round ranges.  Smoky Valley Ranch (red star) is within the breeding 

range of the Burrowing Owl.  The range of the Florida Burrowing Owl subspecies (A. c. 

floridana) is also shown (modified from Poulin et al. 2011). 
 

 

Figure 3. PeeperTM Video ProbeFigure 1. Burrowing Owl Species Range.   
The species range of the Burrowing Owl (Athene cunicularia), indicating breeding, 

nonbreeding, and year-round ranges.  Smoky Valley Ranch (red star) is within the breeding 

range of the Burrowing Owl.  The range of the Florida Burrowing Owl subspecies (A. c. 

floridana) is also shown (modified from Poulin et al. 2011). 
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Figure 2. Smoky Valley Ranch and Burrowing Owl Nest Locations.   
The borders of Smoky Valley Ranch are indicated in black, and the green border within the 

ranch delimits the area occupied by black-tailed prairie dogs (Cynomys ludovicianas).  The 

Smoky Hill River intersects the ranch and separates the ranch into two distinct ecological 

zones.  The locations of the 15 burrows occupied by Western Burrowing Owls are shown as 

yellow dots.  These burrows were identified during visual encounter surveys between 21 April 

and 31 May 2018.   

 

Figure 1. Burrowing Owl Species RangeFigure 2. Smoky Valley Ranch and 

Burrowing Owl Nest Locations.   
The borders of Smoky Valley Ranch are indicated in black, and the green border within the 

ranch delimits the area occupied by black-tailed prairie dogs (Cynomys ludovicianas).  The 

Smoky Hill River intersects the ranch and separates the ranch into two distinct ecological 

zones.  The locations of the 15 burrows occupied by Western Burrowing Owls are shown as 

yellow dots.  These burrows were identified during visual encounter surveys between 21 April 

and 31 May 2018.   
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Figure 3. PeeperTM Video Probe.   
The PeeperTM Video Probe (Sandpiper Technologies, Inc.) used to obtain visual confirmation 

of the presence of eggs, adult owls, or nest materials in burrows.   
 

 

Figure 4. Eggs and Adult Owl Inside a BurrowFigure 3. PeeperTM Video Probe.   
The PeeperTM Video Probe (Sandpiper Technologies, Inc.) used to obtain visual confirmation 

of the presence of eggs, adult owls, or nest materials in burrows.   
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Figure 4. Eggs and Adult Owl Inside a Burrow.   
Burrowing Owl eggs in burrow BOO7 and an adult Burrowing Owl in burrow BOO15.  These 

images were captured with the PeeperTM Video Probe (Sandpiper Technologies, Inc.).  The 

presence of eggs and adult owls in the burrow were two of the methods by which burrows 

were designated as occupied. 

 

 

Figure 5. Entrance to Occupied BurrowFigure 4. Eggs and Adult Owl Inside a 

Burrow.   
Burrowing Owl eggs in burrow BOO7 and an adult Burrowing Owl in burrow BOO15.  These 

images were captured with the PeeperTM Video Probe (Sandpiper Technologies, Inc.).  The 

presence of eggs and adult owls in the burrow were two of the methods by which burrows 

were designated as occupied. 
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Figure 5. Entrance to Occupied Burrow.   
The entrance to burrow BOO11.  This burrow had regurgitated pellets, shredded cattle 

manure, and other debris surrounding the entrance.  There was often shredded cattle manure 

lining the tunnel down into the burrow. 

 

 

Figure 7. Georeferenced Orthomosaic of Unoccupied BurrowFigure 5. Entrance 

to Occupied Burrow.   
The entrance to burrow BOO11.  This burrow had regurgitated pellets, shredded cattle 

manure, and other debris surrounding the entrance.  There was often shredded cattle manure 

lining the tunnel down into the burrow. 
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Figure 6. Georeferenced Orthomosaic of Unoccupied Burrow.   
Aerial image collected with the Phantom 4 Pro unmanned aerial system.  The 1-m x 1-m 

frames were deployed in four 20-m transects at each cardinal direction around the burrow.  

Daubenmire vegetative structure was quantified along each transect at intervals of 2 m, 5 m, 

10 m, and 20 m. 

 

 

Figure 6. DJI Phantom 4 DroneFigure 7. Georeferenced Orthomosaic of 

Unoccupied Burrow.   
Aerial image collected with the Phantom 4 Pro unmanned aerial system.  The 1-m x 1-m 

frames were deployed in four 20-m transects at each cardinal direction around the burrow.  

Daubenmire vegetative structure was quantified along each transect at intervals of 2 m, 5 m, 

10 m, and 20 m. 
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Figure 7. DJI Phantom 4 Drone.   
The unmanned aerial system used to collect aerial imagery of occupied and unoccupied 

burrows at Smoky Valley Ranch: DJI Phantom 4 Pro drone equipped with a 20-megapixel 

Red-Green-Blue sensor.  Detailed specifications are in Table 1. 

 

 

Figure 8. Triangulated Mesh with Visual Obstruction PointsFigure 6. DJI 

Phantom 4 Drone.   
The unmanned aerial system used to collect aerial imagery of occupied and unoccupied 

burrows at Smoky Valley Ranch: DJI Phantom 4 Pro drone equipped with a 20-megapixel 

Red-Green-Blue sensor.  Detailed specifications are in Table 1. 
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Figure 8. Triangulated Mesh with Visual Obstruction Points.   
Triangulated irregular networks (TINs) were generated for each burrow.  Triangle vertices are 

closer together where there is more variation in elevation and further apart where there is less 

variation in elevation.  Darker (black) areas are at lower elevation than lighter (white) areas.  

The TIN shown here was generated for unoccupied burrow BOU10.  To quantify visual 

obstruction caused by surface features, an observer point (green) and target points (yellow) 

were placed on the surface.  The observer point was offset above the surface 0.25 m to 

simulate a Burrowing Owl (Athene cunicularia) looking out from the burrow entrance.   

 

 

Figure 9. Visual Obstruction LinesFigure 8. Triangulated Mesh with Visual 

Obstruction Points.   
Triangulated irregular networks (TINs) were generated for each burrow.  Triangle vertices are 

closer together where there is more variation in elevation and further apart where there is less 

variation in elevation.  Darker (black) areas are at lower elevation than lighter (white) areas.  

The TIN shown here was generated for unoccupied burrow BOU10.  To quantify visual 

obstruction caused by surface features, an observer point (green) and target points (yellow) 

were placed on the surface.  The observer point was offset above the surface 0.25 m to 

simulate a Burrowing Owl (Athene cunicularia) looking out from the burrow entrance.   
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Figure 9. Visual Obstruction Lines.   
Lines of sight for an occupied burrow (left, BOO3) and an unoccupied burrow (right, 

BOU10).  Unoccupied burrows had significantly more obstruction along sight lines (shown in 

red) than occupied burrows.  

 

 

Figure 10. Principal Component Analysis with Daubenmire Structure 

DataFigure 9. Visual Obstruction Lines.   
Lines of sight for an occupied burrow (left, BOO3) and an unoccupied burrow (right, 

BOU10).  Unoccupied burrows had significantly more obstruction along sight lines (shown in 

red) than occupied burrows.  
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Figure 10. Principal Component Analysis with Daubenmire Structure Data.   
The principal component analysis of Daubenmire vegetative cover classes.  Four groups of 

burrows are indicated by the colored circles.  The numbers represent burrows (1-15 are 

occupied burrows and 16-30 are unoccupied burrows).  The predictor variables (the logarithm 

transform of Daubenmire vegetative cover classes) are shown at the end of arrows, and the 

length of the arrow indicates the relative influence the variable had on the location of the 

burrows in the ordination space. 
 

 

Figure 11. Generalized Linear Model of Bare Ground and PresenceFigure 10. 

Principal Component Analysis with Daubenmire Structure Data.   
The principal component analysis of Daubenmire vegetative cover classes.  Four groups of 

burrows are indicated by the colored circles.  The numbers represent burrows (1-15 are 

occupied burrows and 16-30 are unoccupied burrows).  The predictor variables (the logarithm 

transform of Daubenmire vegetative cover classes) are shown at the end of arrows, and the 

length of the arrow indicates the relative influence the variable had on the location of the 

burrows in the ordination space. 
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Figure 11. Generalized Linear Model of Bare Ground and Presence.   
The generalized linear model for bare ground and its effect on presence and absence of 

Burrowing Owls.  Presence of Burrowing Owls increased as bare ground cover increased (Z = 

2.47, df = 27, p = 0.014).   
 

 

Figure 12. Generalized Linear Model of Forb and PresenceFigure 11. 

Generalized Linear Model of Bare Ground and Presence.   
The generalized linear model for bare ground and its effect on presence and absence of 

Burrowing Owls.  Presence of Burrowing Owls increased as bare ground cover increased (Z = 

2.47, df = 27, p = 0.014).   
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Figure 12. Generalized Linear Model of Forb and Presence.   
The generalized linear model for forb cover and its effect on presence and absence of 

Burrowing Owls.  Presence Burrowing Owls decreased as forb cover increased (Z = -2.48, df 

= 27, p = 0.013).   
 

 

Figure 13. Distribution of Total Obstruction at All BurrowsFigure 12. 

Generalized Linear Model of Forb and Presence.   
The generalized linear model for forb cover and its effect on presence and absence of 

Burrowing Owls.  Presence Burrowing Owls decreased as forb cover increased (Z = -2.48, df 

= 27, p = 0.013).   
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Figure 13. Distribution of Total Obstruction at All Burrows.   
The distribution of total number of obstructed pixels at occupied burrows (blue) overlapped by 

the distribution at unoccupied burrows (yellow).  The total number of obstructed pixels at 

unoccupied burrows was significantly greater than at occupied burrows (X2 = 266, df = 9, p < 

0.001).  
 

 

Figure 14. Distribution of Obstruction 0-2 m from All BurrowsFigure 13. 

Distribution of Total Obstruction at All Burrows.   
The distribution of total number of obstructed pixels at occupied burrows (blue) overlapped by 

the distribution at unoccupied burrows (yellow).  The total number of obstructed pixels at 

unoccupied burrows was significantly greater than at occupied burrows (X2 = 266, df = 9, p < 

0.001).  
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Figure 14. Distribution of Obstruction 0-2 m from All Burrows.   
The distribution of obstructed pixels 0-2 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 0-2 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 54.0, df = 9, p < 0.001). 
 

 

Figure 15. Distribution of Obstruction 2-5 m from All BurrowsFigure 14. 

Distribution of Obstruction 0-2 m from All Burrows.   
The distribution of obstructed pixels 0-2 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 0-2 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 54.0, df = 9, p < 0.001). 
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Figure 15. Distribution of Obstruction 2-5 m from All Burrows.   
The distribution of obstructed pixels 2-5 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 2-5 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 179, df = 9, p < 0.001). 
 

 

Figure 16. Distribution of Obstruction 5-10 m from All BurrowsFigure 15. 

Distribution of Obstruction 2-5 m from All Burrows.   
The distribution of obstructed pixels 2-5 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 2-5 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 179, df = 9, p < 0.001). 
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Figure 16. Distribution of Obstruction 5-10 m from All Burrows.   
The distribution of obstructed pixels 5-10 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 5-10 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 334, df = 9, p < 0.001). 
 

 

 

Figure 17. Distribution of Obstruction 10-20 m from All BurrowsFigure 16. 

Distribution of Obstruction 5-10 m from All Burrows.   
The distribution of obstructed pixels 5-10 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 5-10 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 334, df = 9, p < 0.001). 
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Figure 17. Distribution of Obstruction 10-20 m from All Burrows.   
The distribution of obstructed pixels 10-20 m from the burrow at occupied burrows (blue) 

overlapped by the distribution at unoccupied burrows (yellow).  The number of obstructed 

pixels 10-20 m from the burrow at unoccupied burrows was significantly greater than at 

occupied burrows (X2 = 198, df = 9, p < 0.001). 
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DJI Phantom 4 Specifications 

 

Sensor 

 

1” CMOS 

Effective Pixels: 20M 

 

Lens 

 

FOV 84° 8.8 mm/24 mm (35 mm Equivalent) 

f/2.8 – f/11 Auto Focus at 1 m - ∞ 

 

ISO Range 

 

Auto: 100 – 3200 

Manual: 100 – 6400 

 

Shutter Speed 

 

Mechanical: 8 – 1/2000 s 

Electronic: 8 – 1/8000 s 

 

Image Size 

 

3:2 – 5472 x 3648 

4:3 – 4864 x 3648 

16:9 – 5472 x 3078 

  

  

B 

Appendix 1. Hardware and Analytical Specifications for Data Resolution. 
(A)  The specifications for the camera that was used to capture aerial imagery are shown.  

Flights were automated with the Pix4D Capture mobile application.  Therefore, the auto ISO 

range and electronic shutter speed were used for all imagery.  (B)  The Pix4D Capture mobile 

application in use to automate a flight at a burrow.  The flight area was defined as 50 m x 50 

m so the core area covered by transects would be quantified at a high resolution.  The UAS 

flew the area at 30 m above ground level with 80% overlap among images to obtain sub-

centimeter resolution (0.83 cm/pixel).  
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Appendix 2. Visualization of Spatial Data as Rendered by Pix4D Mapper.  
(A) The georeferenced, shared tie points provided the basis for the three-dimensional 

reconstructions of habitat features.  (B)  Three-dimensional triangle meshes provided 

visualization of surface features, but they were not georeferenced.  Therefore, triangle meshes 

were not used for surface data collection.  (C) Densified point clouds were used in ArcMap to 

generate georeferenced, three-dimensional surfaces (triangulated irregular networks). 

A 

B 

C 
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