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ABSTRACT 

 Due to the heterogeneity of habitats, all plants are exposed to at least some degree 

of shade during their lifetime. Reduced light intensity, drops in R:FR ratio, and limited blue 

light are cues for plants to perceive competition; the shade avoidance syndrome (SAS) is 

common for grassland species while shade tolerance (ST) is common for forest species 

when competition is perceived. SAS is characterized by elongation of stems and petioles, 

reduced branches, decreased leaf area, decreased shoot biomass, and increased number of 

ramets. ST is characterized by little elongation of stems and petioles, high chlorophyll 

content and high chlorophyll a/b ratio in leaves, low root-shoot ratio, and thinner leaves. 

In this study, germination of six native Asteraceae species was tested against 10%, 50%, 

and 100% of natural light in a greenhouse. Measurements of growth and reproduction were 

made in two species under the same light conditions. Shaded conditions decreased 

germinabilities of seeds in all species that were tested. Increased light conditions resulted 

in increased growth for both species. When exposed to shaded conditions, both species 

displayed several traits that are related with shade tolerance modifications such as little 

elongation of stems and petioles, higher specific leaf area, higher chlorophyll a/b ratio, 

reduced leaf area and root/shoot biomass, and fewer and thinner leaves. In summary, plants 

displayed unexpected strategies and a high resilience to grow and develop under shaded 

conditions. 
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INTRODUCTION 

 Environmental factors, such as local weather, climate, seasons, or position of the 

plant in the community, directly alter quality and intensity of light that is available for 

plants, strongly influencing their entire life cycle (Kami et al., 2010; Bian et al., 2014, Patel 

et al., 2017). Therefore, due to the heterogeneity of habitats, all plants are exposed to at 

least some degree of shade during their lifetime (Valladares and Niinemets, 2008).  

 The light signal is perceived by three classes of specialized information-transducing 

plant photoreceptors: red (R) and far-red (FR) light-absorbing phytochromes, the blue/UV-

A light-absorbing cryptochromes, and phototropins (Franklin, 2008). Plant photoreceptors 

continuously sense and respond to fluctuating light conditions and modulate plant growth 

and development accordingly (Fiorucci and Fankhauser, 2017). Interactions among the 

different classes of photoreceptors and their downstream signaling pathways mediate both 

adaptive responses, such as phototropism, and developmental transitions, such as 

germination and flowering (Kami et al., 2010; Dierck et al., 2017).  

Plants usually grow and develop in dynamic environments, competing with 

surrounding neighbors over limited resources such as light, water, and nutrients (Keuskamp 

et al., 2010). Reduced light intensity, drops in R:FR ratio, and limited blue light are cues 

for plants to perceive competition and display two contrasting mechanisms of response, the 

Shade avoidance syndrome and shade tolerance (Gommers et al., 2013). Additionally, 

while shade avoidance responses are also induced by cues that indicate neighbor proximity, 

such mechanical stimulation, and presence of plant volatile substances, shade-tolerance 
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responses are known to be elicited in plants mainly via decreases in light intensities 

(Gruntman et al., 2017). 

Shade avoidance syndrome and its metabolic pathways are well described in the 

literature for model species such as Arabidopsis thaliana (Ciolfi et al., 2013) and crop 

species (Carriedo et al., 2016). Shade avoidance syndrome is a group of responses such as 

enhanced growth of the hypocotyl and petioles, more erect position of the leaves, and 

reduced branching, causing substantial changes in plant body form and function (Casal, 

2012; Gommers, et al., 2013; Ballaré and Pierik, 2017). Also, responses such as 

acceleration of flowering, reduced resources for storage and reproduction associated with 

reduced seed set, and truncated fruit development are also common if the shaded condition 

is prolonged (Morelli and Ruberti, 2002). These responses are often accompanied by 

reductions in leaf area, shoot biomass and the size of harvestable organs, a likely 

consequence of the reallocation of resources towards reproductive structures (Franklin, 

2008). 

Shade avoidance responses result in optimizing the deployment of leaves into light 

gaps, balancing resource allocation between shoots and roots, optimizing leaf gas 

exchange, nutrient uptake as a function of the degree of shading, and adaptively regulating 

interactions with herbivores, pathogens, and microorganisms (Ballaré and Pierik, 2017). 

Furthermore, some plants may respond to light-competition cues by displaying traits that 

could improve light interception and minimize competitive interactions such as growing 
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away from neighbors, increasing internode length of stolons and rhizomes, and actively 

positioning new ramets in less crowded patches of the habitat (Gruntman et al., 2017).  

Shade tolerance is a concept that refers to a multifaceted property of plants to 

tolerate low light levels that is achieved by different suites of traits in different species 

(Valladares and Niinemets, 2008). When exposed to shade, tolerant species display several 

physiological, anatomical, and systemic adjustments that promote plant performance under 

limited light conditions and minimize losses (Gommers et al., 2013). Some plant features 

associated with shade tolerance include high specific leaf area, high chlorophyll content in 

leaves, high chlorophyll a/b ratio in leaves, high concentration of anti-herbivory 

metabolites in leaves, low root/shoot biomass ratio, high fractional investment of plant 

mass in leaves, and high carbohydrate storage (Valladares and Niinemets, 2008). 

Furthermore, typical shade-tolerant species suppress shade-avoidance traits, displaying 

little or absent elongation responses in stems and petioles (Valladares and Niinemets, 

2008). 

Shade avoidance responses are more common for grassland species because of their 

characteristics of all individuals in the community to usually have similar heights, and 

overcoming the canopy to reach light is possible (Gommers et al., 2013). Conversely, shade 

tolerance responses are more common for species that occur in understory forests that are 

constantly exposed to shaded conditions and tend to increase carbon gain instead of 

avoiding shade (Gommers et al., 2013). 
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 Light is also an important environmental signal for plants during germination, as 

the ability of plants to detect variations of light intensity, quality, or periodicity provides 

the seed with valuable information about its environment (Fenner and Thompson, 2005). 

This helps to determine where and when germination takes place, which is an essential 

mechanism for seed survival (Chanyenga et al., 2012).  

Seeds are commonly classified as positive photoblastic, negative photoblastic, or 

non-photoblastic according to their light requirements for germination. Positive 

photoblastic seeds require light presence to germinate, negative photoblastic seeds require 

the absence of light to germinate, and non-photoblastic seeds germinate regardless of the 

light condition (Vazquez-Yanes and Orozco-Segovia, 1993). 

For instance, the chances of successful seed establishment may be determined by 

whether the germinating seed is buried in the soil or laid down on its surface. If it is buried, 

its depth is crucial for emergence; if it is on the surface, then the degree of shade may be 

decisive for seedling establishment. Large-seeded seedlings may emerge successfully from 

a much greater depth than light can penetrate, whereas small-seeded seedlings usually may 

not; consequently, it is more likely for small-seeded species to have light as a requirement 

for germination than for large-seeded species (Milberg et al., 2000). However, certain 

species of Fabaceae and Poaceae tend to germinate readily in the dark regardless of seed 

size, while seeds of Cyperaceae and Asteraceae are mostly light-requiring (Fenner and 

Thompson, 2005). 
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Several mathematical expressions have been proposed to quantify germination; the 

most common are germinability, mean germination time, mean germination rate, and 

synchronization index (Ranal and Santana, 2006). These characteristics are essential to 

describe commercial, physiological, and ecological features of the germination process, 

predicting the degree of success of a species based on their capacity to spread germination 

through time (Ranal and Santana, 2006). Also, knowledge of seed biology is fundamental 

for understanding establishment, succession, and regeneration processes that occur in plant 

communities (Vazquez-Yanes and Orozco-Segovia, 1993). Because light requirements for 

seed germination are different among different species (Bewley et al., 2013), they are often 

assumed to be adaptations to the habitat where the species occur (Meyer et al., 1990). 

Germinability is a measurement of the germination capacity; it is defined as the 

percentage of seeds that had the emergence of a living embryo by the end of the experiment 

(Ranal and Santana, 2006). The mean germination time measures the speed of germination 

at a specific condition, and it is calculated as the mean of the number of seeds that 

germinated at each moment during the experimental condition (Ranal and Santana, 2006).  

The germination process under shaded conditions has been studied extensively for 

tropical forest tree species (Pereira de Souza and Valio, 2001; McLaren and McDonald, 

2003; Godoi and Takaki, 2004; Torres-Torres et al., 2018), temperate trees (Figueroa and 

Lusk, 2001), and herbaceous (Jankowska-Blaszczuk and Daws, 2007). In summary, 

evergreen rainforest pioneer species require light to germinate, climax species tolerate 
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shade, and under seasonal rainforest environments, most of the pioneer species tend to 

germinate equally well in bright light or shaded conditions (Thusithana et al., 2018). 

For North American grassland species, most studies are about grasses and little is 

known about forbs. Grasses vary in their light requirements for germination; some have an 

obligate requirement of light for germination, others have their germination increased in 

various degrees under higher light intensities, and still others that do not require light for 

germination (Khan and Gulzar, 2003). 

The tallgrass prairie of North America is temperate, mesic grasslands characterized 

by the abundance of grasses that can attain heights of more than 2 m (Ladd and Oberle, 

1995; Knapp et al., 1998). Forbs are an integral part of the prairie and contribute the most 

to species diversity, they are also good indicators to evaluate the conditions of a grassland 

(Hickman and Hartnett, 2002). Most of the forbs that occur in Kansas are Asteraceae and 

Fabaceae species (Haddock, 2005) and they are adapted and flexible to meet the constantly 

changing conditions that naturally occur in their environment (Küchler, 1974). However, 

there are no studies investigating how Kansas native forbs grow and develop under shaded 

conditions. 

Therefore, the main question that permeated every section of this study was how 

Kansas native Asteraceae species respond to shaded conditions during each stage of their 

development. The primary objective was to characterize and compare the response patterns 

of Kansas native Asteraceae species to shaded conditions during their germination, 

vegetative development and growth, and reproduction. 
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The hypotheses associated with this project were that Asteraceae species that are 

native to Kansas and that inhabit the Tallgrass Prairie are expected to: 

1. Have similar responses to shaded conditions due to their evolutionary 

relatedness; 

2. Have a great diversity of mechanisms to cope with shaded conditions due to the 

high heterogeneity that naturally occur in their environment; 

3. Produce positive photoblastic seeds because it is a common requirement in this 

family and because of the relatively small sizes of their seeds; 

4. Display shade avoidance syndrome when exposed to shaded conditions, a 

common mechanism for grassland species; 

5. Have their reproduction accelerated by shaded conditions, a common strategy 

of shade avoiders. 
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MATERIALS AND METHODS 

 The project consisted of three sets of measures on plants: germination, vegetative 

development, and reproduction. All experiments were conducted in greenhouse conditions 

during the spring and autumn of 2018. The time of each experiment, photosynthetic active 

radiation (PAR), and temperatures are shown in Table 1. 

  

Table 1: Greenhouse conditions during times of germination, vegetative development, and 

reproduction experiments. Values are expressed as means of hourly measures from 8:00 

am to 6:00 pm for six days randomly picked during each experiment ± standard errors. 

 

I. Plant material and growth conditions 

Achenes (seeds) of Ageratina altissima (L.) R.M. King & H. Rob. var. altissima 

(White snakeroot), Aster drummondii Lindl. (Drummond’s Aster), Eutrochium purpureum 

(L.) E.E. Lamont (Sweet Joe-Pye Weed), Rudbeckia laciniata L. (Cutleaf coneflower), and 

Solidago ulmifolia Muhl. ex Willd. (Elmleaf Goldenrod) were purchased from the Kansas 

Native Plant Society online store, and exposed to a 90 d cold stratification at -15 °C. Some 

seeds were used on the germination experiment and some of the seeds were sown and 

   PAR (µmol m-2 s−1)   

Experiment 
Temperature 

(°C) 

Duration 

of light 

exposure 

(hours) 

10% of 

light 

Treatment 

50% of 

light 

Treatment 

100% of 

light 

Treatment 

 

Germination 23.2±0.3 8 27.99±3.9 172.69±24.6 392.22±60.8  

Vegetative 

development 
23.4±0.1 8 22.31±2.8 112.51±11.3 182.6±19.5  

Reproduction 23.2±0.3 8 27.99±3.9 172.69±24.6 392.22±60.8  
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grown in 10 cm wide and 12.5 cm tall pots containing MiracleGro Potting Mix (0.21% N, 

0.07% P, 0.14% K; Scotts Company, Marysville, Ohio, USA) for approximately two 

months under the conditions of light, temperature and humidity of the Fort Hays State 

University Greenhouse (Hays, Kansas, USA; 38° 57’N, 99°23’W). 

 

II. Shade treatments 

Plants were exposed to three light levels: full sunlight conditions or 100% of natural 

light; approximately 50% of light, and approximately 10% of light (Table 1). 

The 10% and 50% of light treatments were provided by 91.4 x 91.4 x 66 cm boxes 

(Fig. 1). 

 

Figure 1: Representative figures of the boxes used to provide 50% of light (left) and 10% 

of light (right) during the germination, vegetative development, and reproduction 

experiments. 
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The boxes were made of a wooden frame and aluminum screen (Phifer, Tuscaloosa, 

Alabama, USA) for the 50% light treatment. Similarly, the 10% light treatment was 

provided by a box made of a wooden frame and a polyethylene weed block landscape fabric 

(Vigoro, Sylacauga, Alabama, USA). Measurements of light intensities within each 

treatment were made hourly with the LI-190R quantum sensor (LI-COR, Lincoln, 

Nebraska, USA) between 8 am and 6 pm for six days randomly assigned during each 

experiment. Black shade nets, as well as white ones, reduce the incident radiation over the 

plants without influencing the quality of light spectrum (Costa et al., 2018). 

 

III. Germination experiment 

 The germination experiment consisted of exposing seeds in petri dishes containing 

filter paper moistened with 5 ml of distilled water to 0%, 10%, 50%, and 100% of light. 

For the 0% of light treatment, petri dishes were wrapped in two layers of aluminum foil. 

For all treatments, each petri dish was sealed with parafilm to avoid evaporation of water. 

Petri dishes were examined daily for 20 days and the number of seeds that had the 

emergence of the primary root was recorded. For each species, 20 seeds were assigned to 

each petri dish, and five petri dishes were assigned to each of the four light treatments (Fig. 

2). 
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Figure 2: Germination experimental design. Seeds of four Asteraceae species were 

exposed to 0%, 10%, 50%, and 100% of light, and germination was checked daily. There 

were 20 seeds per petri dish per species, with five replicate petri dishes per treatment 

 

Germinability measurement was the proportion, in percentage, of seeds that 

germinated within each treatment (Ranal and Santana, 2006). Mean germination time is 

the weighted mean of the germination time, in time units, and the number of germinated 
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seeds at the intervals established for the data collection was used as weight (Ranal and 

Santana, 2006).  

Mean germination time can be used as an evaluation index of the speed of 

occupation for some species, seeds can be classified as fast (mean time <5 days); 

intermediate (mean time 5 to 10 days) and slow (mean time > 10 days) (Ferreira et al., 

2001). 

 

IV. Vegetative development 

 The vegetative development experiment consisted of measurements of growth and 

physiology. Approximately two-months-old Ageratina altissima and Rudbeckia laciniata 

plants were transplanted to 10 cm wide and 12.5 cm tall pots with fresh Miracle-Gro Potting 

Mix and exposed to 10%, 50%, and 100% of light for four weeks. Sample sizes were 11 

plants for Ageratina altissima and 10 plants for Rudbeckia laciniata (Fig. 3). 
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Figure 3: Vegetative development experimental set up. Two-months-old Ageratina 

altissima and Rudbeckia laciniata plants were exposed to 10%, 50%, and 100% of light for 

four weeks. Sample sizes were 11 plants for Ageratina altissima and 10 plants for 

Rudbeckia laciniata. 

 

 Each pot was consistently watered as needed, and the positions of the pots were 

randomized weekly within each treatment. Heights of Ageratina altissima stems were 

measured once per week from the visible bottom part of the stem to its apex. Due to its 

rosette growth form, petiole lengths of Rudbeckia laciniata were recorded rather than stem 

height. Additionally, the number of leaves, nodes, branches, and ramets were also recorded 
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once per week for both species. At the end of the experiment, plants were harvested for 

physiological measures, where chlorophyll concentrations in leaves where quantified. 

 After measuring the fresh weight of leaves without petioles, leaf area was measured 

by scanning leaves with a flatbed scanner and analyzing images with ImageJ software 

(National Institutes of Health, Bethesda, Maryland, USA). Pixels of leaves were counted 

and compared with pixels produced by the image of an object of known area. Leaves were 

dried at 60°C for 48 h for dry biomass measurement. The dry leaf biomass divided by the 

fresh leaf biomass is the leaf dry matter content (LDMC), the specific leaf area (SLA) is 

the leaf area divided by leaf dry mass, and leaf thickness (LT) is the (SLA × LDMC) −1 

(Vile et al., 2005). Also, shoots and roots were dried at 60°C for 48 h for biomass 

measurement. 

 Chlorophylls a and b were extracted with a buffer solution composed of 5 mM Tris-

HCl, 0.5 mM MgCl, 0.2 mM cysteine hydrochloride, and 0.2% w/v PVP-40 (Maricle, 

2010). First, a 27 mm2 leaf disc was obtained from fresh young leaves and its weight was 

measured, 100 µl buffer solution was added, leaf disc was ground with a chilled mortar 

and pestle. Then, 40 µl of the grindate was collected, mixed with 960 ml of 100% ethanol, 

and absorbances were quantified with a spectrophotometer according to Lichtenthaler and 

Wellburn (1983), which chlorophyll a (µg of chlorophyll/ml of solution)=(13.95A665-

6.88A649), chlorophyll b (µg of chlorophyll/ml of solution) = (24.96A653-7.32A665), and 

total chlorophyll content (mg chl/g leaf) = chl concentration (µg/ml)x(1mg/1,000µg)x(0.04 

ml/0.004g). 
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V. Reproduction experiment 

Approximately one-month-old Ageratina altissima plants were transplanted to 10 

cm wide and 12.5 cm tall pots containing Miracle Gro Potting Mix (0.21% N, 0.07% P, 

0.14% K; Scotts Company, Marysville, Ohio, USA) and exposed to three light conditions, 

10%, 50%, and 100% of light (Table 1). Each pot was consistently watered as needed, and 

the positions of the pots were randomized weekly within each treatment. The time for the 

first flower bud to emerge, as well as the number of plants that had flowers within each 

treatment, were recorded after eight weeks of treatment. 

 

VI. Data Analysis 

 All data analyses were performed with R-Project Software Version 3.5.1 (R 

Foundation for Statistical Computing, Vienna, Austria). Germination data were normally 

distributed and had equal variances, so two Two-way analysis of variances (ANOVA) were 

performed, and the significance level considered was 0.03333 after B-Y correction 

(Narum, 2006).  

 Vegetative development data were normally distributed and had equal variances, 

so multiple Two-way ANOVAs were performed, and the significance level considered was 

0.01656 after B-Y correction (Narum, 2006). Post-hoc comparisons for significant p-

values were performed using HSD Tukey test, and the significance level considered was 

0.05. 



 

 

16 

 

 For measurements of the number of ramets, and reproduction measurements, 

multiple Chi-Square tests of independence were performed, with the significance level of 

0.05. 
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RESULTS 

I. Germination 

 Germinability means were as low as 8% in 0% light, but were typically much higher 

in the light treatments, up to 100% in some cases (Fig. 4). Conditions of 0% and 10% of 

light decreased germinabilities of seeds in all species that were tested (p<0.001). 

 

Figure 4: Germinabilities (%) of plant species across light treatments. Bars represent means 

of five replicates ± standard errors. 

  

 Mean germination times ranged from 2.12 to 10.7 days across species and 

treatments (Fig. 5). Mean germination times were usually reduced in low light treatments 

(p=0.012) and across species (p<0.001). 
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Figure 5: Mean germination time (days) of plant species across light treatments. Bars 

represent means of five replicates ± standard errors. 

 

II. Vegetative development and growth 

Mean stem heights in Ageratina altissima ranged from 9.76 cm to 18.09 cm by the 

conclusion of the experiment (Fig. 6) and shaded conditions resulted in reduced stem 

heights (p=0.007). 
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Figure 6: Stem height (cm) of Ageratina altissima plants over time (weeks) in different 

light treatment. Points represent means of 10 plants ± standard errors. 

 

Mean petiole length in Rudbeckia laciniata ranged from 2.9 to 4.13 mm and were 

not significantly different across treatments (p=0.247) (Fig. 7). 
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Figure 7: Petiole length (mm) of Rudbeckia laciniata leaves over time (weeks) in 

different light treatments. Points represent means of 11 replicate plants ± standard 

deviations. 

 

Mean leaf number per plant ranged from 3.43 to 48.89 across species and treatments 

(Fig. 8). Plants of both species had fewer leaves when exposed to 10% of light (p<0.001) 

and a consistent number of leaves when exposed to 50% and 100% of light.
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Figure 8: Number of leaves produced per plant over time in different light treatments. 

Points represent means of 10 plants ± standard error.  

 

Higher light intensity treatments resulted in increased branching in Ageratina 

altissima (p=0.005), but not in Rudbeckia laciniata, that did not produce branches during 

the experiment. A. altissima plants exposed to 10% of light did not develop branches, plants 

under 50% of light had a mean number of 1.33 branches per plant, and plants under 100% 

of light had a mean of 2.55 branches (Fig. 9).  
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Figure 9: Number of branches that Ageratina altissima produced over time (weeks) in 

different light treatments. Points represent means of 10 plants ± standard error.  

 

Shaded conditions resulted in reduced plant growth and a decreased root/shoot ratio 

for both species. The mean shoot biomass (Fig. 10), root biomass (Fig. 11), and root/shoot 

ratio (Fig. 12) of A. altissima and R. laciniata were reduced for plants exposed to 10% of 

light (p<0.004), except for A. altissima plants that had a root/shoot biomass of 1.01 under 

50% of light. 
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Figure 10: Shoot dry biomass (g) after four weeks of growth in different light treatments. 

Bars represent means of 10 plants ± standard errors. 

 

Figure 11: Root dry biomass (g) after four weeks of growth in different light treatments. 

Bars represent means of 10 plants ± standard errors. 
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Figure 12: Root/shoot dry biomass ratio after four weeks of growth in different light 

treatments. Bars represent means of 10 replicate plants ± standard errors. 

 

Vegetative reproduction of Ageratina altissima was also influenced by light in the 

experiment (p=0.012). Ageratina altissima had 0.39 ramets per plant under 50% of light, 

and 0.26 ramets per plant under 100% of light (Fig. 13). Conversely, Rudbekia laciniata 

plants did not have any ramets. 
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Figure 13: Number of ramets produced by plants after four weeks of growth in different 

light treatments. Plants exposed to the 10% of light treatment produced no ramets. Bars 

represent means of 10 replicate plants ± standard errors. 

 

Mean leaf areas of plants ranged from 1.61 to 9.06 cm2 (Fig. 14), with an increased 

leaf area associated with increased light for both species (p=0.014). 
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Figure 14: Leaf area (cm2) of Ageratina altissima and Rudbeckia laciniata across light 

treatments after four weeks of growth. Bars represent means of 10 replicate plants ± 

standard errors. 

 

Plants exposed to 10% of light had thinner leaves than plants in 50% or 100% of 

light (p=0.002). Mean leaf thickness of plants ranged from 0.008 to 0.024 cm, with a 

positive relationship with light in both species (Fig. 15). 
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Figure 15: Leaf thickness (cm) of Ageratina altissima and Rudbeckia laciniata across light 

treatments after four weeks of growth. Bars represent means of 10 replicates ± standard 

errors. 

 

Conversely, specific leaf area ranged from 263.76 to 672.90 cm2 g-1 (Fig. 16) and 

although there was no statistically significant difference (p=0.191), there was a trend of 

increased specific leaf area for plants under shaded conditions. 
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Figure 16: Specific leaf area (cm2 g-1) of Ageratina altissima and Rudbeckia laciniata 

across light treatments after four weeks. Bars represent means ± standard errors. 

 

Chlorophyll a content in leaves was 0.25 to 0.60 μg g-1 leaf (Fig. 17a) and was 

consistent across treatments and species (p=0.022). However, chlorophyll b contents (Fig. 

17b) total chlorophyll (Fig. 17c), and chlorophyll a/b ratio (Fig. 17d) increased with 

increased light intensities (p<0.001). 
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Figure 17: Pigment content (µg g-1 fresh mass) in leaves of Ageratina altissima and 

Rudbeckia laciniata across light treatments after four weeks of growth. (a) chlorophyll a 

content (µg g-1), (b) chlorophyll b content (µg g-1), (c) total chlorophyll content (µg g-1) 

and (d) chlorophyll a/b ratio. Bars represent means of 10 replicates ± standard errors. 

 

III. Reproduction 

 Shaded conditions negatively affected the percentage of plants that produced 

flowers (p=0.004) and the time it took for the first flower bud to develop (p=0.012). Only 

A. altissima plants exposed to 50% and 100% of light produced flowers and only 12.5% of 

the plants under 50% of light produced flowers, whereas 50% of the plants under 100% of 
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light produced flowers (Fig. 18). The time for the first flower bud to develop was 34 days 

for plants under 50% of light and 42 days for plants under 100% of light (Fig. 18). 

 

Figure 18: (Left) Percentage of Ageratina altissima plants that flowered by the end of eight 

weeks of growth across light treatments. (Right) The time it took for the first flower bud to 

develop within each treatment. Plants under 10% of light treatment did not develop flowers 

during the experiment. Bars represent means of 15 replicates. 
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DISCUSSION 

In this experiment, the role of light was investigated in germination, growth, and 

reproduction in Asteraceae species that are native to Kansas. Increased light intensities 

enhanced growth, development, and reproduction in those species. Surprisingly, plants 

displayed several mechanisms related to shade tolerance. 

I. Germination 

 Germination process in Asteraceae species was consistent with the literature on 

grasses, which has indicated that species vary in their light requirements during 

germination. Some native grasses have an obligate requirement of light for germination, 

while in others presence of light enhances seed germination to varying degrees, and still 

others do not require light for germination (Khan and Gulzar, 2003). 

Presence of light is a common requirement for seed germination of Asteraceae and 

small-seeded species (Milberg et al., 2000; Fenner and Thompson, 2005) and shaded 

conditions reduced germination of all plants tested in the present study, although, the 

absence of light did not completely inhibit germination.  

Mean germination time may be used as evaluation index of the speed of occupation 

for some species; for instance, seeds can be classified as fast (mean germination time less 

than 5 days); intermediate (mean germination time 5 to 10 days) and slow (mean 

germination time longer than 10 days) (Ferreira et al., 2001). Therefore, Ageratina 

altissima, Aster drummondii, and Rudbeckia laciniata are considered fast, whereas 

Solidago ulmifolia and Eupatorium purpureum are slow. Fast germination may indicate 
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that the species may rapidly establish in the environment, taking advantage of favorable 

conditions. However, rapid environmental change conditions may strongly impact seedling 

establishment (Ferreira et al., 2001), particularly conditions of light. 

Light is not the only factor that regulates plant germination, other environmental 

factors such as temperature should be tested to provide a better understanding of the 

germination requirements of those species (Khan and Gulzar, 2003). 

 

II. Shade avoidance 

 Shade avoidance syndrome is a common mechanism of grassland species to avoid 

shaded conditions and is characterized by elongation of stems and petioles to overcome the 

canopy and reach light; additional traits associated with shade avoidance syndrome are 

reduced branches, decreased leaf area, decreased shoot biomass, and increased number of 

ramets (Casal, 2012; Gommers et al., 2013; Ballaré and Pierik, 2017). 

Surprisingly, Ageratina altissima and Rudbeckia laciniata did not display the 

classical shade avoidance syndrome that is largely described for Arabidopisis thaliana 

(Ciolfi et al., 2013), crops (Carriedo et al., 2016), and a few wildflowers (Du et al., 2017). 

Stems of Ageratina altissima and petioles of Rudbeckia laciniata were shorter in plants 

exposed to shaded conditions. However, both plants had some responses associated with 

shade avoidance syndrome. 

For instance, both species had decreased leaf area and shoot biomass, and Ageratina 

altissima plants had fewer branches when exposed to shaded conditions. Also, Ageratina 
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altissima had more ramets when exposed to 50% of light than those exposed to 100% of 

light, which is a common mechanism for plants under competition for light, which actively 

places new ramets in less crowded places of their environment (Gruntman et al., 2017). 

However, plants under severe shade had no ramets. It is hypothesized that because plants 

under severe shade had very limited growth, they had no mechanical stimulation from 

neighbor plants. Therefore, there was no trigger for mechanisms of avoiding competition.  

Besides, Ageratina altissima plants growing under 50% of light had fewer 

percentage of flowering and a reduced time for the first flowers to develop, compared with 

the plants growing under 100% of light. Those are common reproductive responses of 

shade avoiders if the shaded condition is prolonged (Morelli and Ruberti, 2002). 

 

III. Shade tolerance 

Shade tolerance is a concept that refers to a multifaceted property of plants to 

tolerate low light levels that is achieved by different suites of traits in different species 

(Valladares and Niinemets, 2008). It is usually characterized by little or absent elongation 

responses in stems and petioles, high specific leaf area, high chlorophyll content and high 

chlorophyll a/b ratio in leaves, low root-shoot ratio, thinner leaves, and high fractional 

investment of plant mass in leaves (Valladares and Niinemets, 2008). Shade tolerance 

responses are more common for species that occur in understory forests that are constantly 

exposed to shaded conditions and tend to increase carbon gain instead of avoiding shade 

(Gommers et al., 2013). 
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Unexpectedly, Ageratina altissima and Rudbeckia laciniata displayed several traits 

that are related with shade tolerance modifications such as little elongation of stems and 

petioles, higher specific leaf area, and higher chlorophyll a/b ratio, reduced leaf and 

root/shoot biomass, and fewer and thinner leaves, when exposed to shaded conditions. 

Those are mechanisms associated with shade tolerance, as these plastic phenotypic 

responses enhance light capture and photosynthetic utilization, increasing plant 

performance in the shade (Valladares and Niinemets, 2008). Tolerance mechanisms in 

plants, however, depend on specific structural and physiological traits, but it is also 

strongly affected by the status of other environmental factors (Valladares and Niinemets, 

2008). 

In summary, increased light conditions resulted in increased growth for both 

species. Plants displayed mechanisms to avoid competition when in partial shade such as 

actively positioning new ramets, but they also displayed mechanisms to minimize loss and 

maximize carbon gain and light harvest when exposed to an increased shaded environment.  

Measurements on plant height and petiole length differed from measurements 

described on Solidago canadensis (Asteraceae); however, measurements of root, shoot, 

and root/shoot biomass in Ageratina altissima and Rudbeckia laciniata were consistent 

with those in Solidago canadensis (Du et al., 2017). 

Shade avoidance and shade tolerance, however, are highly complex mechanisms 

and depend heavily on external biotic and abiotic factors other than light (Valladares and 

Niinemets, 2017). 
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IV. Competition for light in grassland species 

 The dominant grasses in tallgrass prairies characteristically have canopies ranging 

from 0.6 to 1.5 m tall, creating a vertical gradient in light in their environment (Jurik and 

Kliebenstein, 2000; Haddock, 2005).  

 Shade tolerance mechanisms of Tallgrass forbs may elucidate the mechanisms of 

competition in their environment. By displaying higher specific leaf area, and higher 

chlorophyll a/b ratio, reduced leaf and root/shoot biomass, fewer and thinner leaves, plants 

enhance light capture and photosynthetic utilization, increasing their fitness.  

 Furthermore, plants producing more ramets when exposed to partially shaded 

environments is a common mechanism for plants under competition, which plants actively 

place new ramets in less crowded places of their environment (Gruntman et al., 2017). 

 Some Asteraceae species such as Ageratina altissima, Rudbeckia laciniata, and 

Solidago canadensis are invasive in China, South Korea, and Europe (Du et al., 2017; Byun 

and Lee, 2017; Majewska, 2018). Because Solidago canadensis, an invasive in China, 

displays similar shade tolerance strategies as plants tested in this study, it is hypothesized 

that those mechanisms also play central roles in a successful invasion of Ageratina 

altissima and Rudbeckia laciniata in Europe (Du et al., 2017). 
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CONCLUSIONS 

In this study, increased light intensities enhanced growth, development, and 

reproduction in Asteraceae species that are native to Kansas. Unexpectedly, plants 

displayed several mechanisms related with shade tolerance such as little elongation of 

stems and petioles, higher specific leaf area, and higher chlorophyll a/b ratio, reduced leaf 

area and root/shoot biomass, and fewer and thinner leaves. 

Most of the studies about shade influences on plant germination, growth, vegetative 

development, and reproduction are about commercial crops or forest species and little is 

known about grassland species. Therefore, this work provides the scientific community 

with novel information on classic features regarding functioning and development of 

widely spread plant species that are native to Kansas and the Great Plains. Such information 

is essential and has the potential to be largely used for both conservation for endangered 

species and management of encroaching species. 
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