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ABSTRACT 

 

Potential field and well log data were used to investigate basement features and the 

overlaying sedimentary layers across four counties in the Central Kansas Uplift. The 

objective of this study was to (1) investigate and determine the orientation of basement 

structures/features, (2) estimate the depth to basement, and (3) examine the influence (if 

any) and relationship between the basement features and the overlaying sedimentary 

deposits of three oil fields in the study area. Aeromagnetic data was used to interpret and 

map basement features by applying derivative filters. Well log data was used to pick 

formation top values and create contour maps of sedimentary strata. Two major types of 

structural features were identified in the basement of the study location: (i) lineaments 

representing faults that mostly trend NE-SW and NW-SE, and (ii) basement highs that 

highlight two well known basement features: the Russell and Rush ribs. The estimated 

depths to basement using the Source Parameter Imaging (SPI) technique for 

aeromagnetic data vary between -112 m (-368 ft.) and -1287 m (- 4222 ft.) subsea. The 

inaccuracy of estimated SPI depths from the aeromagnetic data vary between -22% and 

10% of the actual depths obtained from well log data. Contour maps of formation tops of 

the Arbuckle Group  the three fields show antiforms with gentle slopes (~< 15 m/ km), 

channel-like, and karst features. Structures mapped in the Arbuckle appeared to be 

influenced by basement topography and basement lineaments (mostly faults). Contour 

maps of the sedimentary layers (e.g., Lansing-Kansas City Group), overlaying the 

Arbuckle in most of the study location show broad and flat-topped deposits with no 

significant structural influence from the basement. Our results show considerable 

structural influence of basement structures on sedimentary layers directly overlaying it. 
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1. INTRODUCTION 

Potential field methods (gravity and magnetics) have a long history in exploration 

since the 1920’s (e.g., Reeves, 2005). These methods are relatively inexpensive and can 

cover large areas, when compared to other methods that also cover large areas such as the 

seismic method. For these reasons, in large scale exploration projects, potential field data 

are typically the first type of geophysical data that are collected and utilized. Large scale 

coverage using potential field methods help geophysicists to map regional scale features, 

to identify potential locations for detailed surveys for hydrocarbon exploration, and to 

identify ore bodies for mineral exploration. Potential field surveys can be conducted from 

land, air, marine and satellite platforms. Advancement in the acquisition and the 

processing of potential field data has proven to be more effective than other methods 

(e.g., seismic) for mapping regional basement structural trends (e.g., lineaments, faults), 

specific geological features (e.g., salt domes, volcanic intrusive rocks, ore bodies) and 

investigating environmentally inaccessible areas. For example, Peel et al., (1995) used 

the gravity method to study salt tectonics of Cenozoic offshore environments in the Gulf 

of Mexico. Pilkinton et al., (2000) employed potential field methods to identify different 

basement domains in a sedimentary basin in western Canada, while William and Finn 

(1985) used potential field methods to identify and map volcanic terranes and sub-

volcanic intrusions in the Cascade Ridge of the USA. Allek and Hamoudi (2008) used 

aeromagnetic data to identify potential diamond exploration targets in southwestern 

Algeria. For hydrocarbon exploration, potential field methods have also been used to 

study basement structures associated with petroleum exploration in southern Tunisia 

(Gabtni et al., 2012) or to investigate magnetic susceptibility associated with hydrocarbon 



2 
 

degradation in shallow reservoirs (Ali et al., 2013). In addition, potential field methods 

have also been used to study neo-tectonic events; for example, Kinabo et al., (2007) used 

potential field methods to evaluate the early development of the Okavango Rift zone, in 

Botswana.  

Generally, potential field methods study the contrast in specific geophysical 

properties within and between rock layers. Gravity methods study the density contrast in 

rocks, while magnetic methods study the differences in magnetic properties (e.g., 

magnetic susceptibility) of rocks. Generally, in the subsurface, basement rocks tend to 

have a higher density as well as higher magnetic susceptibility than the overlaying 

sedimentary rocks. For this reason, potential field data has been mostly used to study 

basement geology, major structures, and the tectonic framework of a region and to a 

lesser extent in reservoir characterization and delineation. The applications of potential 

field methods continue to be significant for mineral and hydrocarbon exploration.  

In parts of Kansas, studies of the Precambrian basement have used various 

methods including some potential field methods. Some of these studies show that the 

basement influences the topography of the overlaying sedimentary layers (e.g., Gerhard, 

2004; Newell et al., 1989; Watney et al., 2008; etc.). In other studies, using well log data, 

Walter (1946 and 1958) identified basement highs of the Central Kansas Uplift (CKU) 

that might have also influenced the overlaying sedimentary layers. The CKU is the most 

prominent subsurface structure in Kansas, trending NW-SE and bounded by a set of 

faults (Koster, 1935). These NW-SE and NE-SW trending faults were reactivated during 

the Phanerozoic time. Fault reactivation probably, also affected the formation of the 

structural and stratigraphic hydrocarbon traps of the Arbuckle and the Lansing-Kansas 
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City Groups. The Arbuck and the Lansing-Kansas City Grouops are two most 

hydrocarbon producing units in the CKU (Gerhard, 2004).  

Well log data have long been used for mapping subsurface features and for 

hydrocarbon exploration in Kansas particularly drilled wells in the Arbuckle and 

Lansing-Kansas City. For example, Cole (1975) mapped sedimentary strata of Cambrian-

Ordovician age to identify structural elements (e.g., folds, faults) in Kansas using well 

log data. However, mapping structures using well log data has several limitations that are 

due to: (i) variations in depth of investigation (all wells are not drilled to same depth and 

do not typically reach the basement rock), (ii) different spatial distribution and continuity 

of wells (the well spacing varies and continuity between or within fields can be lost), (iii) 

data availability (different well log data are collected and owned by different operators 

who may or may not make them available at the time of investigation), and (iv) 

differences in well logging dates, well logging technology, and the cost of well log data. 

It is therefore, beneficial to combine the high resoulution capabilities of well log data and 

the broad coverage of potential field data to investigate the relationship between 

sedimentary strata and basement rocks, especially in the CKU which is a prolific oil 

producing region in Kansas, and potentially host several small and yet undiscovered 

hydrocarbon traps.  

Between 1975 and 1979, the Kansas Geological Survey (KGS) acquired state 

wide potential field data. After this data acquisition, several studies (e.g., Gay, 1995; 

Watney et al., 2008; Yarger, 1982, 1989; Xia et al., 1996; etc.) were conducted to further 

investigate basement geology in many parts of Kansas. For example, Gay (1995) used 

residual aeromagnetic data to interpret basement structures and documented how the 
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structural highs in petroleum bearing rocks were influenced by high and low magnetic 

anomalies in six fields (Moore SW, Willow Dale, Alameda, Coats, Gillian, and O.S.A. 

fields) found in southwestern Kansas. Watney et al., (2008), interpreted some lineaments 

from aeromagnetic data as basement faults to explain how these basement structures 

influence overlaying sedimentary layers, in six oil fields (Nicholas, Donald, Glick, 

Spivey-Grabs, Dickman and Victory fields) in southwestern Kansas.  

Although, the statewide potential field data was used to study basement rocks in 

some parts of Kansas, no published study has yet examined the influence of basement 

features on the overlaying sedimentary layers within the CKU using the aeromagnetic 

data and/or combined with well log data. The purpose of this study is to use the 

aeromagnetic and well log data to examine the relationship between basement features 

and sedimentary layers across four counties in the CKU.  

2. OBJECTIVES 

The objectives of this study are to: (1) Investigate and determine the orientation of 

basement features across four (Ellis, Russell, Rush and Barton) counties in Kansas. (2) 

Estimate the depth, from the surface to the basement rocks in the study area. (3) Examine 

the influence (if any) of basement features (e.g., structures) on the overlaying 

sedimentary deposits.  

3. LOCATION 

The study area covers four counties in north central Kansas (USA). These 

counties include: Ellis, Russell, Rush and Barton counties. These four counties are 

located between latitude 39o30”- 38o00” N and longitude 98o00”- 100o00” W (Figure 1). 
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Three field locations (including two known oil fields and one cluster of oil fields) were 

selected within the study area for additional investigations using well log data. The 

location of the fields within the study area are shown in Figure 1. The three fields 

include: 1) the Bemis-Shutts field (located along the crest of the CKU), 2) the Ellis 

Cluster field (located in the northwestern part of the CKU), and 3) the Kraft-Prusa field 

(located in the southeastern part of the CKU). The Ellis Cluster field is comprised of a 

grouping of 10 smaller oil fields, including the Ellis field, Ellis Southeast field, Ellis 

Southwest field, Ellis Northwest field, Ellis West field, Ellis East field, Raynesford field, 

Raynesford East field, Kraus field, Pleasant field, and Irvin field. The cluster was created 

because these fields are very close together, share a similar geological setting, and when 

combined are comparable in size to the other two fields. 

 

Figure 1: This figure shows the study location (four counties and selected fields). The 

orange square shows the location of the four counties (left). Three outlined polygons are selected 

oil fields (right). The Bemis-Shutts field is located to the north, the Ellis Cluster field (composed 

of 10 small fields) is located to the west and the Kraft-Prusa field is located to the south-east of 

the study location. 
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4. GEOLOGICAL BACKGROUND 

4.1. Distribution and Nature of Precambrian Rocks  

Precambrian rocks in Kansas are part of a platform-like extension of a large 

continental craton known as the Canadian Shield (Merriam, 1963). Figure 2 shows the 

distribution of Precambrian rocks in Kansas, which are divided into two rock terranes, 

with one terrane to the north and the other terrane to the south (Van Schumes et al., 1987) 

of the State.  

 

Figure 2: Generalized map of Kansas showing major basement terranes (modified from 

Newell et al., 1987). Ages of these terranes are color coded. Major sedimentary basins and 

deformational structures are also highlighted in the figure. The orange colored box shows the 

current study location. 

 

The northern terrane is part of the southern extension portion of the Central Plains 

Province (Van Schumes et al., 1987). It is mostly composed of granitic and 

metamorphosed sedimentary rocks that formed ~1630 m.y. ago (Bickford et al., 1981; 

Yarger, 1982). The southern terrane belongs to the Western Granite-Rhyolite Province is 

mostly composed of younger rhyolitic rocks and epizonal granite plutons that formed 

~1400 m.y. ago (Bickford et al., 1981). Xia et al., (1996) interpreted the geology of the 
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basement rocks in Kansas using potential field data. The study shows that most of the 

basement rocks in the southwestern part of the CKU are mesozonal granitic rocks (~1625 

m.y. ago) with few patches of epizonal granitic rocks (~1400 m.y. ago). These different 

terranes of basement rocks signify a change in tectonic style from the accretion of 

successive volcanic arches to an extensional tectonism (Bickford et al., 1986). The 

change in tectonic style likely fractured the brittle basement rocks, and might have 

significantly influenced later structures (Gerhard, 2004) in the basement and in the 

overlaying rocks. 

4.2.  Structural Framework  

The structural framework of Kansas is of great interest to exploration geologists 

and has been studied since oil production began in the 1920’s. In 1920’s, studies were 

mostly conducted using outcrop field mapping techniques, and subsurface investigation 

using the available well data. Some of these studies (e.g., Merriam, 1955) identified two 

major structural trends in Kansas: NE-SW trend, represented by the Nemaha Uplift and 

the Pratt Anticline and NW-SE trend, represented by the Cambrian Arch, the Central 

Kansas Uplift, and the Bourbon Arch. The CKU and the Nemaha Uplift (Figure 3) are 

two major basement highs which were developed during the Mississippian (Newell et al., 

1987). Two sets of faults bound these basement highs. One of these fault sets is the NE-

SW trending Nemaha fault zone, which bounds the Nemaha Uplift (Figure 2) and is 

situated in eastern Kansas. Two other sets of faults, the mid-continental rift system 

(MSR) and the Humboldt fault zone are also situated in the proximity of the Nemaha 

Uplift (Figure 3) (Baars, 1995). Despite their closeness and similar trends, these sets of 
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faults are separate from the fault sets bounding those bounding the Nemaha Uplift (Baars, 

1995).  

 

Figure 3: This figure shows the generalized fault patterns of the Precambrian basement 

derived from subsurface studies (Baars, 1995). The green polygon represents the NW-SE trending 

CKU and the blue polygon represents the NE-SW trending Nemaha uplift. The black polygon 

under the blue polygon represents the Humboldt fault zone. 

  

 The CKU is bounded by NW-SE trending faults and is situated in northcentral 

Kansas. According to Baars (1995), the southerly extension of the MRS fault zone 

complexly offset the southward extension of the CKU in central Kansas. The CKU where 

the present study site is located, was developed during the Mississippian as a result of 

fault reactivation in response to the stresses generated by collisional orogeny (Kluth and 

Coney, 1981). Before the CKU was formed, a broad NW-SE trending structural high 

known as the Central Kansas Arch was the major geologic feature during the Ordovician 

and Devonian times (Newell et al., 1987). The Central Kansas Arch was fractured by 

changes in tectonism during the late Proterozoic time (Gerhard, 2004). During the 

Mississippian, when the CKU was developing, stresses from collisional orogeny 
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reactivated existing fractures and faults, and created secondary uplifts (the Rush and 

Russell ribs) within the Central Kansas Arch (Koster, 1935).  

4.3. Sedimentary Geology  

Sedimentary rocks in the Central Kansas Uplift and most of Kansas typically 

consist of many relatively thin units that rest parallel to one another (Merriam, 1963) in a 

cyclical pattern. Jewett and Merriam (1959) observed that the thickness of the 

sedimentary deposits in Kansas vary between 170 m (560 ft.) to 3300 m (10800 ft.). Most 

of these sedimentary layers were deposited on a shallow-shelf marine environment. 

During most of the Phanerozoic, Kansas was located closer to the equator and covered in 

a shallow warm sea (Franseen et al., 2004; Watney, 1980; and Watney et al., 2008). 

Because of their environment of deposition, the sedimentary layers in Kansas are mostly 

composed of carbonate lithofacies (Merriam, 1963). 

Throughout the Phanerozoic, tectonic events reactivated Precambrian basement 

faults which created some major deformational features including the Salina basin, the 

Forest City basin, the Central Kansas Uplift, and the Nemaha Uplifts that cover most of 

the State. In central Kansas, several secondary structures (e.g., Fairport anticline in 

Russell County, and the Rush rib in Rush County etc.) were also developed along with 

these major structures (Jewett, 1951). Over time, sedimentary layers in Kansas have been 

interrupted by seven major unconformities (Merriam, 1963) that significantly altered the 

stratigraphic sequence. Three of these major unconformities ware identified in the study 

area and are marked by erosional surfaces: 1) the erosion between late Precambrian and 

early Cambrian that marks the nonconformity between the Arbuckle and the Precambrian 

basement rocks, 2) the erosion between late Devonian and early Mississippian that marks 
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the disconformity between the Simpson and the Arbuckle Group) and 3) the erosion 

between late Mississippian and early Pennsylvanian that marks the disconformity 

between the Lansing-Kansas City Group and the Simpson Group (Merriam, 1963).  

The reactivation of basement faults, the variations in the thicknesses of deposits 

and the major unconformities, have together created geometries that formed significant 

structural, stratigraphic, and a combination of structural and stratigraphic traps in the 

CKU (Gerhard, 2004). Detailed investigations of the subsurface geologic features are 

necessary to study these traps especially their structural elements. Figure 4 summarizes 

the stratigraphic relationship between rock layers in the study area. Among these 

deposits, the Arbuckle Group, the Simpson Group and the Lansing-Kansas City Group 

are the major hydrocarbon bearing units and the Heebner Shale is a major marker bed. 

4.3.1. The Arbuckle Group 

Rocks of the Arbuckle Group are present in most of Kansas and occur at depths 

between 150 m (500 ft.) and 1500 m (5000 ft.) (Newell et al, 1987). The Arbuckle strata 

was deposited in tidal to subtidal shallow marine environments (Wilson et al., 1991). 

Rocks of the Arbuckle Group are composed mostly of light grey to white cherty, vuggy 

dolomites (Franseen, 1994). The Arbuckle is bounded at its base and its top by two major 

unconformities (Sloss, 1963). The unconformity at the base is a nonconformity on the 

Precambrian surface (between the Arbuckle and the Precambrian basement) and the 

unconformity at the top is a disconformity formed during the late Devonian and early 

Mississippian (between the Simpson and the Arbuckle Group rocks). In Kansas, 

Arbuckle rocks mostly overlay the Precambrian basement, unless the Reagan Sandstone 

is present. The Reagan Sandstone is a basal Paleozoic transgressive sandstone unit that 
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typically lies directly on the Precambrian basement rocks and below the Arbuckle layer 

when it is present. The composition and texture of the Reagan Sandstone is markedly 

influenced by the underlying basement rock. The Reagan can either be quartzose, arkosic, 

or feldspathic; texturally it can range from fine to coarse grained (Newell et al., 1987). 

The Arbuckle Group can be as thick as 160 m (550 ft.) in the central Kansas (Walter, 

1958), whereas the thickness of Reagan sandstone averages 13 m (40 ft.) or less wherever 

it is present in Kansas (Newell et al., 1987).  

 
 

Figure 4: Generalized stratigraphic column of the Central Kansas Uplift. Highlighted sections 

show the intervals present in the study location (after Cansler and Carr, 2002). 

 

Cansler and Carr (2002) report that the Arbuckle Group was affected by the 

rejuvenation of basement structures that resulted in fractures, regional uplifts, and minor 
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horst and graben features. In addition, the Arbuckle was modified by karst processes 

during periods of prolonged and repeated subaerial exposure that began after the 

Arbuckle deposition, and continued in some areas until the Pennsylvanian period 

(Franseen, et al., 2004). The combination of these deformational and depositional 

processes led to the formation of structural, stratigraphic, and combination of structural 

and stratigraphic hydrocarbon traps, making rocks of the Arbuckle Group the most 

significant oil producing strata in the CKU (Newell et al., 1987). 

4.3.2. The Simpson Group 

The Simpson Group rocks are primarily present in the south-central part of 

Kansas, although thinner layers are present in a few places within the CKU (Newell et al., 

1987). The Simpson Group is the basal unit of rocks which were formed during the long 

term oceanic inundation on the North American continent and is dominantly composed of 

a sand-shale sequence with minor amounts of carbonate rocks (Adler, 1971). Late 

Mississippian to early-Pennsylvanian tectonism removed the Simpson Group over much 

of the CKU (Merriam, 1963). In addition, the sub-Pennsylvanian erosion truncated the 

Simpson Group along the periphery of the CKU (Newell et al., 1987). Fault reactivation, 

erosional truncation and lithological characteristics of the formation (interbedded shale 

and sandstone sequence), together formed potentially significant hydrocarbon traps in the 

Simpson Group wherever it is present in the CKU (Newell et al., 1987).    

 4.3.3. The Lansing-Kansas City Group (LKC) 

 Rocks of the Lansing-Kansas City Group are present in most of Kansas. The 

rocks that makeup the group are thicker in the basin areas of the state (e.g., Salina basin) 

compared to the thicknesses typically observed on the CKU (Watney, 1980). On the 

CKU, the Lansing-Kansas City Group directly overlies the Arbuckle Group in areas 
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where Mississippian and Ordovician deposits (e.g., the Simpson Group, Viola Group, 

etc.) were eroded by sub-Pennsylvanian erosion (Merriam, 1963).  

The LKC Group is composed of interbedded carbonates and shales with 

occasional minor coal beds, siltstones, and sandstones (Watney, 1980). In northwestern 

Kansas, the interbedded limestones and shales of the LKC are components of a 

cyclothem. Each cycle of the cyclothem is characterized by four components: a thin but 

distinctive basal transgressive unit (deposited as sea level rose), overlain by a marine 

shale, followed by the regressive carbonate, and a regressive shale unit (Watney, 1980). 

The Lansing-Kansas City Group was deposited over an extensive area of a broad shelf 

margin and its sedimentary structures were influenced by contemporaneous local shelf 

topography and multiple episodes of erosion caused by basement uplift (Baars and 

Watney, 1989). For these reasons, structural, stratigraphic, and combination of structural 

and stratigraphic hydrocarbon traps were formed by the rocks of the Lansing-Kansas City 

Group (Rascoe and Adler, 1983).  

4.3.4. The Heebner Formation 

 The Heebner Formation is one of seven formations comprising the Shawnee 

Group (Merriam, 1963). The Heebner is an important formation because it is a marker 

bed that is used as a datum for much of the stratigraphic and structural work in the 

subsurface of central and western Kansas (Jewett and Merriam, 1959). The Heebner 

Formation is composed of black shales and has very high gamma ray readings which 

makes it easier to identify from well logs (e.g., Gamma ray). 
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5. METHOD AND DATA 

5.1. Principles of Magnetic Survey 

Magnetic surveys are designed to study small perturbations in Earth’s magnetic 

field. These perturbations are due to the anomalous magnetic signatures from different 

subsurface rocks. The presence of magnetic materials in subsurface rocks generate a 

magnetic field known as the anomalous magnetic field. The anomalous magnetic field of 

any subsurface rock is induced by the stronger magnetic field produced from Earth’s 

core. This larger and stronger field is known as Earth’s main magnetic field or the 

geomagnetic field. The magnetic intensity of the geomagnetic field varies from 20,000 

nT to 70,000 nT (Reeves, 2005). Typically, during a magnetic survey the total magnetic 

field intensity data (the main magnetic field and the anomalous magnetic field together) 

are acquired.  

The anomalous magnetic field of subsurface rocks depend on the magnetic 

susceptibility of the materials in the rock. The magnetic susceptibility of a material 

indicates the degree or extent to which the substance can be magnetized in response to an 

applied magnetic field (Robinson, 1988). This magnetic susceptibility of a material relies 

on the combined effect of electron motions and spin orbitals in atoms to produce strong 

magnetism within small regions of a substance known as magnetic domains (Robinson, 

1988). Based on their susceptibility, magnetic materials can be grouped into four types: 

diamagnetic, paramagnetic, ferromagnetic, and anti-ferromagnetic material (Reeves, 

2005). The response of diamagnetic and paramagnetic materials in a magnetic field is 

very negligible, and these materials are generally described as non-magnetic materials. 

Thus, they are not significant for magnetic survey responses. Ferromagnetic materials get 
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magnetized relatively easily when placed in a magnetic field along the field lines 

(Robinson, 1988). Only a few groups of material (typically those containing iron, nickel, 

cobalt or some of their alloys) have strong magnetic domains and are ferromagnetic. In 

the case of anti-ferromagnetic materials, magnetic domains cancel each other out to give 

zero magnetization. Generally, most magnetic materials of geological significance are 

imperfectly anti-ferromagnetic (Reeves, 2005). Magnetic surveys aim to record the 

response of ferromagnetic materials in the subsurface. 

Aeromagnetic survey is the most common technique for acquiring magnetic data. 

The technique is designed to acquire subsurface magnetic data using an airborne 

magnetometer mounted on an aircraft. For convenience of data collection, the 

aeromagnetic technique only measures the scalar magnitude of the total magnetic field 

intensity (Reeves, 2005), although the magnetic field of the Earth or any other magnetic 

body occurs as a vector quantity that requires three scalar components.  

After collecting the total magnetic intensity data, the geomagnetic field component is 

removed by using the International Geomagnetic Reference Field (IGRF), to get the local 

magnetic anomaly. Different temporal variations (e.g., diurnal variations, micro-

pulsations, magnetic storms, secular variation etc.) have profound impacts on the local 

IGRF reading. Therefore, the effects of all these variations are also removed from the 

total magnetic field intensity before any interpretations are made. Due to the complex 

nature of magnetic properties, the solutions derived using magnetic methods are non-

unique. For this reason, different spectral filtering techniques have been developed to 

enhance the geological interpretation of data obtained from magnetic surveys.   
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5.2. Spectral filters 

 Spectral filters are mathematical algorithms which are applied to magnetic data in 

a spectral domain or a wave domain, and involve vector quantities in three directions. 

Usually, aeromagnetic data is collected only in the spatial domain and then transformed 

to the spectral domain before filters are applied using Fast Forward Fourier 

transformation (Yarger, 1982). Once the filter is applied, the data is transformed back 

into the spatial domain and then displayed on a map, a profile or a 3D model (Gunn, 

1975). The purpose of spectral filtering is to remove unwanted characteristics depending 

on the interpretation objectives and enhance the quality of the data. The following 

spectral filters were applied to the aeromagnetic data used in this study. 

5.2.1. Reduction to Pole 

Reduction to pole (RTP), is a filter that removes the effect of the inclination and 

declination of the geomagnetic field. RTP removes the skewness of the anomalies and 

directly positions magnetic anomalies over their sources. RTP assumes a uniform 

direction of magnetization (geographic north-south) for all anomalous magnetic source 

bodies which are magnetized by the geomagnetic field (MacLoed et al., 1993). The effect 

of magnetization of the geomagnetic field on any magnetic source body depends on the 

orientation of the geomagnetic field direction at that location. The orientation of the 

geomagnetic field (imaginary lines from one magnetic pole to the other) vary at different 

geographic locations because of the Earth’s rotation and the dipole nature of geomagnetic 

field (Reeves, 2005).  

The magnetic inclination and declination at any given location on Earth, indicates 

how the orientation of the geomagnetic field varies at that location from the geographic 



17 
 

north-south direction. The angle between the geomagnetic north (the direction the north 

end of a compass needle points) and geographic north of the Earth is known as 

declination. On the other hand, magnetic inclination is the angle between the 

geomagnetic field direction and a horizontal plane (Robinson, 1988). According to Grant 

and Dodds (1972), the RTP operator can be expressed as, 

𝐿(𝜃)=
1

[sin(𝐼)+𝑖 cos(𝐼) cos(𝐷−𝜃)]2 

Where, θ is the magnetic field direction, D is declination and I is inclination. 

When the data used in this study was collected between 1975 and 1979, the average 

declination and inclination values in Kansas was D=67.8˚and I=6.78˚. 

5.2.2. Vertical Derivative 

The vertical derivative filter (VDR) is a mathematical expression to determine 

how the magnetic anomaly changes with respect to depth from the surface. The vertical 

derivative filter narrows the width of anomalous bodies and makes it easier to locate and 

delineate source bodies that have anomalous magnetic fields (Cooper and Cowan, 2004). 

Generally, higher order (e.g., 2nd order) vertical derivatives show better results for 

delineating source body structures. However, higher order vertical derivatives are also 

much more sensitive to the noise in the data, which can be difficult to eliminate. For this 

reason, it is sometime preferable to apply the 1st order vertical derivative to a data set to 

minimize the effect of noise. The VDR was also selected because of its ability to 

delineate linear features. As presented earlier, previous studies have shown that most of 

the basement structures across the CKU are contacts (e.g., faults) with fewer structural 

highs (e.g., the Russell rib). The basic mathematical expression for the 1st order vertical 

derivative (Miller and Singh, 1994) is given by, 
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VDR= 
𝑑𝑇

𝑑𝑧
 

Where, VDR= 1st order vertical derivative, T = the total magnetic field intensity and z = 

depth. 

 For the data set in this study, the 1st order VDR was used. This was selected 

because the data was acquired relatively long ago between 1975 and 1979 and susceptible 

to having more noise than recently acquired data. 

5.2.3. Tilt Angle Derivative 

The tilt angle derivative (TDR) is a mathematical expression to determine the rate 

at which the tilt angle changes with respect to the depth of the magnetic anomalies, from 

the surface. The tilt angle is given by the inverse tangent of the vertical derivative over 

the total horizontal derivative of any magnetic source body. The tilt angle estimates the 

magnitude of the rate of change of the total magnetic intensity in all directions and 

normalizes all the edges in the data. In general, for 1st order vertical derivative, the values 

over magnetic source bodies are positive, over the edge of the source bodies the values 

are zero and at the base of the magnetic source bodies the values are negative (Miller and 

Singh, 1994). For the horizontal derivative, the values at the edge of the magnetic source 

bodies are positive, and the values at the top of the magnetic source bodies are zero 

(Miller and Singh, 1994). Given that the tilt angle derivative is the ratio of vertical and 

horizontal derivatives, it does not require any prior approximation of the magnetic source 

body structure. The anomaly on a tilt angle derivative map is maximum at the top of a 

magnetic source body and minimum at the base of the source body (Salem et al., 2007). 

Therefore, positive tilts from TDR maps show the top of source body structures, whereas 

negative tilts show the base of source body structures. A map of tilt derivative shows the 
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tilting of source bodies, with maximum tilt at 90° and minimum tilt at -90° (Verduzco et 

al., 2004). The tilt angel derivative is given by the relation, 

TDR= 
𝑑𝜃

𝑑𝑧
  

Where, TDR = tilt angle derivative, and θ = tilt angle and z is depth.  𝜃 = tan−1
(

𝑑𝑇

𝑑𝑧
)

(
𝑑𝑇

𝑑ℎ
)
 

and (
𝑑𝑇

𝑑ℎ
) = √

𝑑𝑇

𝑑𝑥
+

𝑑𝑇

𝑑𝑦
. (

𝑑𝑇

𝑑𝑥
), (

𝑑𝑇

𝑑𝑦
), 𝑎𝑛𝑑 (

𝑑𝑇

𝑑𝑧
) are derivatives of three components of magnetic field 

intensity and (
𝑑𝑇

𝑑ℎ
) is the total horizontal derivative. In general,  

Tilt Derivative (TDR)   =   tan−1 (
VDR

HDR
)  in Radians 

The Tilt derivative range is restricted to −
π

2
 ≤ TDR ≤  +

π

2
  or (-90° ≤ TDR ≤  +90°). 

5. 3. Depth Estimation from Magnetic Data using Source Parameter Imaging (SPI) 

Source parameter imagining (SPI) is a depth estimating technique used to 

determine the depth to basement from the ground surface using the local wavenumber of 

the analytical signal (Roest et al., 1992, and Smith et al., 1998).  

The analytical signal is given by, 

A (x,z) = 
𝑑𝑇(𝑥,𝑧)

𝑑𝑥
 – j 

𝑑𝑇(𝑥,𝑧)

𝑑𝑧
 

Where, A (x, z) is the analytical signal, T(x,z) is the magnitude of the anomalous total 

magnetic field,  j is an imaginary number and x and z are Cartesian coordinates of the vertical and 

horizontal directions perpendicular to the strike of the magnetic source bodies.  

The local wavenumber of the analytical signal is defined by Thurston and Smith 

(1997) to be: 

K1 = 
𝑑

𝑑𝑥
 tan−1(

𝑑𝑇

𝑑𝑧
/

𝑑𝑇

𝑑𝑥
) 

Where, K1 is the local wavenumber and (
𝑑𝑇

𝑑𝑧
) and (

𝑑𝑇

𝑑𝑥
) are derivatives of total magnetic 

field intensity in the z and x direction. 
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The analytical signal (A) value is highest over the edge of the magnetic source 

bodies (Nabighian, 1972); therefore, the edge of any magnetic source body is represented 

by the maxima of the local wavenumber of the analytical signal. These maximum values 

of the local wavenumber are the edges of anomalies that can be used to define the 

location of the anomalous source body. The result of the analytical signal is independent 

of the inclination of the Earth’s field and the amplitude of the analytic signal simply 

relates to the magnetization of the source body. The result is largely immune to anomaly 

distortion due to permanently magnetized sources. An advantage of this SPI method is 

that it can display depth as an “image” assuming either contacts (e.g., faults) or dipping 

thin sheets (e.g., dike) models (Smith et al., 1998). 

5.4. Aeromagnetic Data  

The aeromagnetic data used in this study were acquired by the KGS between 

1975 and 1979 (Xia et al., 2000) as previously discussed. All airborne magnetic data are 

usually acquired along flight-lines that represent the path of the aircraft carrying the 

magnetometer used for data collection. Spacing between flight-lines is important for data 

resolution. Generally, the closer the spacing of flight-lines, the better the resolution of the 

data acquired. For the data set used in this study, flight-lines were flown from east to west 

and spaced 3.2 km (2 miles) apart. On average 90 to125 readings were gathered every 

meter along each flight-line (Xia et al., 2000). A smaller amount of data was also 

collected in the direction normal to the flight-lines (north to south), to provide some 

additional controls on the temporal variation of the geomagnetic field. These 

perpendicular lines to the flight-lines are known as tie-lines. The spacing between tie-

lines are usually about ten time the spacing of flight-lines. For the data set in this study, 
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tie-lines were flown in the north-south direction and were spaced 32 km (20 miles) apart. 

Figure 5 shows a layout of the general direction of flight-lines and tie-lines for this data 

set. 

 

Figure 5: Magnetic survey grid map over Kansas showing the survey flight-lines and tie-

lines. The highlighted box shows the study location 

Flight-height is another crucial factor for data resolution. The lower the flight 

height of the airborne magnetometer from the anomalous magnetic source bodies, the 

better the resolution of the features. However, lower flight heights limit the depth of 

investigation. Usually, most anomalous source bodies are found in the basement rocks of 

any survey area. The flight height is therefore determined based on the thickness of the 

sedimentary layers of the area. In Kansas (including the location of this study), the 

thickness of the sedimentary strata varies between ~170 m (560 ft.) and ~3300 m (10800 

ft.) (Jewett and Merriam, 1959). For this reason, the statewide aeromagnetic survey was 

acquired using flight heights that varied between 915 m (3000 ft.) in the eastern part and 

1372 m (4500 ft.) in western part of the State where the basement is deeper. The flight 

heights for both the flight-lines and tie-lines were measured relative to mean sea level. 
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The flight heights above the CKU where our study area is located averages 914 m (3000 

ft.) above mean sea level. 

5.5. Well Log Data 

 The well log data used in this study was mainly Gamma ray (GR) and mud log 

data obtained for wells drilled in the three field locations (the Bemis-Shutts field, Ellis 

Cluster field, and Kraft-Prusa field) as described earlier. The well log and mud log data 

were used to pick formation top values that were contoured to create maps. Most of these 

wells were drilled by local oil and gas companies. The well data was collected and stored 

by the Kansas Geological Survey and made available through their website 

(www.kgs.ku.edu). The formation tops contour maps were created using the mapping 

software (IHS Petra©) by applying the Kriging algorithm. The number of wells that were 

used to generate contour maps for each of the field locations are: 2271 wells from the 

Bemis-Shutts field, 910 wells from the Ellis Cluster field, and 1575 wells from the Kraft-

Prusa field. Contour maps were generated for formation tops of four formations including 

the Arbuckle Group, the Simpson Group (only in the Bemis-Shutts field), the Lansing-

Kansas City Group and the Heebner Formation.  
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6. ANALYSIS AND INTERPRETATION 

6.1. Magnetic Derivative Maps of the Basement  

6.1.1. Total Magnetic Intensity Map  

 

Figure 6: The total magnetic intensity (TMI) map (after applying reduction to pole (RTP) 

spectral filter) of the study area. The two relatively high magnetic anomalies (in the middle and in 

the southeastern part of the study area) correspond to the structurally high Russell and Rush ribs. 

GRT represents areas with granitic rocks and QZT represent areas with quartzite rocks.  

 

The total magnetic intensity (TMI) map (Figure 6) shows the distribution of the 

magnetic anomaly across the study area. The TMI map is generated after applying the 

reduction to pole (RTP) spectral filter using magnetic inclination and declination values 

at the study location, when the data was acquired. The basement rocks in the study area 

are granite-rhyolite to metasedimentary rocks, and show magnetic intensity values 

between 770 nT and 1315 nT. On the TMI map the warm (bright) colors (yellow to pink) 
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with magnetic intensity values greater than 1050 nT, represent the granitic basement 

rocks (that typically have higher magnetic content compared to quartzites) (Hankel et al., 

2002). The two zones in the middle of the study location outlined showing high magnetic 

anomalies are identified as the Russell and Rush ribs. The cold (dark) colors (greens to 

blues) with magnetic intensity values less than 900 nT, represent basement rocks that 

have a lower content in magnetic materials. In the study area, the dark blue colors with 

magnetic intensity values less than 700 nT in the south-east portion represent the 

quartzite rocks. 

6.1.2.  Vertical Derivative Map 

 The vertical derivative (VDR) map of the study area (Figure 7) is generated from 

the TMI grid after applying the RTP filter. The VDR magnetic anomalies in the study 

area vary between 0.05 nT/m and -0.05 nT/m. Based on previous studies (e.g., Baars, 

1995; Newell et al., 1989; Watney et al., 2008; etc.), which show that most of the 

basement features in the study location are linear structures (mostly faults), linear 

magnetic anomalies with low values (< -0.018 nT/m) are interpreted as faults and 

highlighted with black and white solid lines on Figure 7.  

Interpreted basement lineaments mostly trend NW-SE and NE-SW. On the VDR 

map, the NW-SE trending lineaments (white solid lines) appear to be truncated by the 

NE-SW trending lineaments (solid black lines) in the southeastern corner. This 

observation is consistent with various previous studies (Baars, 1995; and Van Schumes 

and Hinze, 1985) that show NE-SW trending lineaments (extensions of MRS fault zone) 

truncating NW-SE trending lineaments on the southeastern part of the CKU. Baars 

(1995) interpreted the intersection of these two major fault zones as conjugate sets in 
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central Kansas. These conjugate sets of faults were reactivated during the Mississippian 

when the CKU was developed. Therefore, sedimentary layers (mostly pre-Mississippian 

strata) directly overlaying the Precambrian basement should show the influence of both 

the NE-SW and NW-SE basement structural trend within the CKU.  

 

Figure 7: The vertical derivative (VDR) map of the study area. The black solid lines 

represent NE-SW trending lineaments and the white solid lines represent NW-SE trending 

lineaments. 

 

6.1.3. Tilt Angle Derivative Map 

The tilt angle derivative (TDR) map (Figure 8) is generated from the same TMI 

grid after applying the reduction to pole filter. On the TDR map the values of tilt angle 

derivative vary between 1.2 rad/m and -1.3 rad/m.  
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Figure 8: The tilt angle derivative (TDR) map of the study area. The thin black lines are 

zero contour lines representing the edge of the magnetic source bodies. The NW-SE trending 

Russell and Rush ribs are outlined with thicker black lines. 

The warm colors represent positive tilt (TDR greater than 0.8 rad/m), which 

indicate the top of magnetic source bodies (e.g., epizonal granitic pluton) whereas, the 

cold colors represent negative tilt (TDR less than -0.9 rad/m), which indicate the base of 

magnetic source bodies or basement faults. The zero-contour lines (thin black color) are 

drawn on the TDR map to represent the edge of anomalous source bodies. The Rush rib 

and the Russell rib previously interpreted, are outlined with thicker black zero-contour 

lines in the southwest section and in the middle portion of the map. Both the Rush and 
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Russell ribs, trending NW-SE, are observed to be crosscut by NE-SW trending basement 

lineaments on the southeastern part of the study area. 

6.2. Depth Estimation 

6.1.3. Source Parameter Imaging Map 

The source parameter imaging (SPI) map (Figure 9) is generated from the same 

TMI grid as the previous maps.  

 

Figure 9: The source parameter imaging (SPI) map of the study area. The deeper parts <-

1290 m (-4232 ft.) subsea of the basement are shown in warm colors and the shallower parts >-

112 m (-368 ft.) subsea of the basement are shown in cold colors. The outlined areas show the 

two known structurally high Russell and Rush ribs. Note: The gaps on the map are areas where 

the estimated depth from the SPI exceeded the set depth limit of -1900 m (-6234 ft.) for the study 

area. Depth limit was set to -1900 m (-6234 ft.) because no well from the study area had a 

basement surface deeper than -1900 m (-6234 ft.) subsea. 
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Twelve depth values from both SPI and basement tops contour map are selected 

along the line A-B to check the accuracy of the estimated depths from the SPI method. 

Assuming that most of the basement structures are faults, the SPI method is applied to 

gridded data for dipping contact (fault) model. The estimated SPI depths vary between -

112 m (-368 ft.) and -1287 m (-4220 ft.). The estimated depths to basement on the SPI 

map (Figure 9) are subsea depths. The values that are less than -1025 m (-3362 ft.) 

represent the deep basement surface, whereas the values greater than -413 m (-1355 ft.) 

represent the shallow basement surface. The locations corresponding to the Rush and 

Russel ribs, have shallower basement surface and are highlighted in blue.  

6.2.2. Basement Tops Contour Map 

The contour map from wells that penetrated the Precambrian basement does not 

cover the entire study area because of the limited number of wells that are drilled to the 

basement. However, the well data obtained and contoured, provides a good estimation of 

depth to the basement surface across the key portion of the study area. The estimated 

depths from the basement tops contour map are subsea depths (Figure 10) and vary 

between -637 m (2090 ft.) and -451 m (1480 ft.). The depth values higher than -600 m 

(1968 ft.) represent the deeper basement surface and the depth values lower than -450 m 

(1476 ft.) represent the shallower basement surface.  

6.2.3. Depth Comparison from SPI and Basement Tops Map 

The estimated depths from the SPI and the contour map of basement tops from 

well data (Table 1) are compared for data points along the profile from A to B shown on 

Figures 9 and 10. The comparison show that depths estimated from the SPI map are 22% 

lower to 10% higher than the actual depths determined from basement tops contour map. 
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The deviation of SPI depth values from the actual depths obtained from well log data (top 

to the basement) was determined as follows: 

Accuracy of SPI depth compared to the actual depth= 

𝐷𝑒𝑝𝑡ℎ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑆𝑃𝐼 −𝑑𝑒𝑝𝑡ℎ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 𝑡𝑜𝑝𝑠 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑚𝑎𝑝 

𝑑𝑒𝑝𝑡ℎ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 𝑡𝑜𝑝𝑠 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑚𝑎𝑝
×100% 

 

Figure 10: The contour map of basement tops. The deeper parts <-627 m (-2057 ft.) 

subsea of the basement are shown in warm colors and shallower parts >-441 m (-1445 ft.) subsea 

are shown in cold colors. Note: The gaps on the map are areas where depth values from the well 

log were not available. 

Studies have shown that the estimated depths from the SPI method have ±20% 

inaccuracy compared to the actual depths to basement (Smith and Salem, 2005). The SPI 

results from this study are close to the range described by Smith and Salem (2005). One 

reason for the differences between depths obtained from the SPI and the depths from well 

data might be because the depths from the SPI method depend on the locations of the 
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anomalous magnetic source bodies (which are not always located on the basement 

surface). Formation tops are usually the actual depths of two layers, representing the 

surface of the formation, in this case the basement. Thus, in the absence of well control, 

SPI can be an effective way to estimate the maximum possible thickness of a sedimentary 

layer. Another advantage of SPI is that it is a magnetic survey method that can cover 

larger areas.  

 

Table 1 Estimated depths to basement from SPI and contour map of basement tops. The 

locations of sample points are shown in Figure 9 and 10 along the profile A to B.  

 

 

6.3. Deformation Structures in Sedimentary Layers 

Figure 11 shows an overlay of selected field locations on the TMI map of the 

study area.  

 Longitude Latitude SPI depth (m) 
well log 

depth (m) 
Difference 

A -98.84 38.79 -539.62 -443.34 -22% 

 -99.13 38.58 -581.65 -478.05 -22% 

 -98.86 38.78 -551.58 -458.69 -20% 

 -98.79 38.83 -525.96 -441.33 -19% 

 -99.26 38.48 -657.60 -573.21 -15% 

 -98.94 38.72 -554.48 -505.37 -10% 

 -98.85 38.79 -448.13 -451.00 1% 

 -99.18 38.54 -463.27 -469.95 1% 

 -99.19 38.53 -454.23 -483.55 6% 

 -99.25 38.49 -517.90 -556.36 7% 

 -99.14 38.58 -426.45 -466.05 8% 

B -98.95 38.71 -458.16 -509.08 10% 
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Figure 11: The total magnetic intensity (TMI) map of the study location showing outlines 

of selected fields (Bemis-Shutts field, Ellis Cluster field and Kraft-Prusa field). 

Contour maps are generated for formation tops of the Arbuckle Group, the 

Simpson Group (only for the Bemis-Shutts field), the Lansing-Kansas City Group and 

Heebner Formation at these fields. The stratigraphic relationships between the formations 

of the study area are shown on Figure 12. 
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Figure 12:  Succession of sedimentary layers in the three fields of the study location. 

Note: The stratigraphic thicknesses are not drawn to scale. 

6.3.1 Maps of the Bemis-Shutts field 

Four contour maps are generated from formation tops data from wells in the 

Bemis-Shutts field. The formation tops contoured are: 1) the Arbuckle, 2) the Simpson, 

3) the Lansing-Kansas City, and 4) the Heebner. The map of the Arbuckle (Figure 13A) 

shows two structural highs similar to anticlinal features. On Figure 13A two structural 

highs are highlighted with yellow polygons (number 1 and number 2). The structural high 

1 trends NE-SW and the structural high 2 trends N-S. The structural high 1 is not 

symmetrical. The slope of structural high 1 on the southeastern part is gentler, about 4 m / 

km (22 ft. / mile) (< 15 m / km or 50 ft./ mile) and the northeastern part is steeper, about 

18 m / km (70 ft. / mile). The structural high 2 is almost symmetrical and shows an 

average gentle slope of about 7 m / km (35 ft. / mile). A channel-like feature is also 

observed in the Bemis-Shutts field which is outlined on Figure 13A.  
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Figure 13: Contour maps of formations in the Bemis-Shutts field. A) Top of the 

Arbuckle. The map shows two structural highs and a channel-like low with circular features 

(indicated by arrows) that are possible karst features. B) Top of the Simpson. The map shows two 

main structural highs. C) Top of the Lansing-Kansas City. The map shows flat broad fold-like 

features on the northeastern corner. D) Top of the Heebner. The map shows similar features to the 

Lansing-Kansas City Group features over the Bemis-Shutts field. The dots show well locations. 

 

The first part of this channel-like feature between the two structural highs 

discussed earlier (structural features 1 and 2 in Figure 13A), trends NE-SW. To the 

southwest of these two structural highs, the second part of the channel-like feature is 

outlined, which trends NW-SE. Within the channel-like feature, several circular features 

are also observed. The observed circular features are comparatively deeper than the 

surface of the channel-like feature. These features are possible karst features known to be 

present in the Arbuckle Group (Wilson et al., 1991). Rocks of the Arbuckle Group and 
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associated sedimentary features generally have relatively very low magnetic content, 

which make the structures unidentifiable in magnetic survey maps. Therefore, channel-

like and karst features are not observed on the derivative filter maps. On the VDR map 

(Figure 7), NW-SE and NE-SW trending basement lineaments are observed at the Bemis-

Shutts field. Similar structural trends on the basement and the structures (e.g., channel-

like feature) in the sedimentary layer (e.g., the Arbuckle Group) suggest basement 

structural influence. 

The contour map of the Simpson Group (Figure 13B) also shows two structural 

highs, and a channel-like feature similar to the structures observed in the Arbuckle 

Group. The Simpson Group directly overlay the Arbuckle Group where it is available. 

Similar structural trends and the presence of similar structural elements (e.g., structural 

highs, channel-like feature) to those observed in the Arbuckle Group, suggest that the 

structures in the Simpson Group are similarly influenced by basement structures. 

The contour map of the Lansing-Kansas City Group (Figure 13C) shows a broad 

flat-topped feature on the northeast corner of the Bemis-Shutts field. Another structurally 

high feature is observed on the north-central portion. Compared to the structural highs 

observed in the Arbuckle and the Simpson Group, the highs in the Lansing-Kansas City 

Group are broader, less steep and flat-topped, indicating a change in deformational 

processes.  

The pre-Pennsylvanian erosion not only eroded Mississippian sedimentary layers 

but also affected the pre-Mississippian sedimentary layers such as the Arbuckle Group 

and the Simpson Group. In addition, the tectonic activities during the Mississippian and 

Pennsylvanian period also deformed the pre-Mississippian sedimentary layers (Jewett 
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and Merriam, 1959; Merriam, 1963). Therefore, the structures in the Lansing-Kansas 

City Group do not mimic the structures of the underlying sedimentary strata (notably the 

Arbuckle and the Simpson Groups) that show basement structural influence. These 

differences suggest that structures in the Lansing-Kansas City Group are not significantly 

influenced by basement structures, or to the same extent, like the Arbuckle and the 

Simpson Group.  

 The Heebner Formation directly overlay the Lansing-Kansas City Group. The 

contour map of the Heebner Formation (Figure 13D) shows similar structural trends to 

the structures observed in the Lansing-Kansas City Group. Similar shape and trend of 

structural features suggest that structures in the Heebner Formation are influenced by the 

underlying topography of the Lansing-Kansas City Group. 

6.3.2. Maps of the Ellis Cluster Field 

Three contour maps are generated from formation tops data obtained from wells 

in the Ellis Cluster field. The formation tops contoured are: 1) the Arbuckle, 2) the 

Lansing-Kansas City, and 3) the Heebner.  

The contour map of the Arbuckle Group shows two structural highs (anticlinal 

features) trending NW-SE (Figure 14A). The slope of both anticlines are very gentle 

about 4.5 m / km (24 ft. / mile) and are almost symmetrical. These anticlinal features 

appear to be influenced by the Rush rib, because the Ellis Cluster field is approximately 

located on the northeastern part of the CKU above the Rush rib (Koster, 1935). The VDR 

and TDR maps (Figures 7 and 8) show a set of NW-SE trending lineaments on the 

southwestern corner of the study area which are possible basement faults bounding the 
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Rush rib. According to previous study (Koster, 1935), these basement faults were 

reactivated during the Mississippian due to tectonic activities which developed secondary  

structures (e.g., Rush rib, Russell rib) along with the CKU. 

 

Figure 14: Contour maps of formations in the Ellis Cluster field. A) Top of the Arbuckle. 

B) Top of the Lansing-Kansas City. C) Top of the Heebner. The outlined areas show structural 

highs. The Heebner map shows structures similar to the Lansing-Kansas City Group. The dots 

show well locations. 
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 In addition to the deformation, the Arbuckle beds were truncated as result of tectonic 

events occurred in the Mississippian (Ballard and Reinschmidt, 1995). Underlying 

basement structures (Rush rib and faults bounding it) and the location of anticlinal 

features observed in the Arbuckle Group, suggest basement structural influence on the 

pre-Mississippian sedimentary layers (e.g., the Arbuckle Group). 

 In the Ellis Cluster field, the pre-Pennsylvanian erosion not only eroded 

Mississippian sedimentary layers but also affected the pre-Mississippian sedimentary 

layers such as the Arbuckle and the Simpson Group (Merriam, 1963). As a result, the 

Simpson Group in the Ellis Cluster field is completely absent, and the Lansing-Kansas 

City Group directly overlays the extensively eroded surface of the Arbuckle Group in 

most places. The contour map of Lansing-Kansas City Group (Figure 14B) shows two 

structural highs (anticlinal features) trending NW-SE. Observed structural highs in the 

Lansing-Kansas City Group show similar structural trend and shape to the underlying 

structures observed in the Arbuckle. The similarities between structures in the Lansing-

Kansas City and the Arbuckle Group suggest a direct influence of the underlying 

topography of the Arbuckle Group which is a continuation of basement influence. 

The Heebner Formation directly overlay the Lansing-Kansas City Group all over 

the Ellis Cluster field. The formation tops contour map of the Heebner Formation (Figure 

14C) shows similar structures to those observed in the Lansing-Kansas City Group. This 

similarity suggests an influence of the underlying topography of Lansing-Kansas City 

Group and shows direct influence of the basement structures. 
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6.3.3. Maps of the Kraft-Prusa Field 

 Three contour maps are generated from formation tops data from wells in the 

Kraft-Prusa field. The formation tops contoured are:1) the Arbuckle, 2) the Lansing-

Kansas City, and 3) the Heebner.  

The formation tops contour map (Figure 15A) of the Arbuckle Group shows six 

highs. Two of the most prominent highs in the northwest part of the field is aligned with 

the underlying NE-SW trend. Although, previous studies (Walter, 1946; 1958) identified 

six structural highs or basement hills underlying the Arbuckle Group in the Kraft-Prusa 

field, none of these highs are identified on the derivative maps. However, the NE-SW 

trending basement lineaments are observed on the derivative maps. The observations 

from derivative and contour maps suggest that, the basement structural highs are aligned 

in a NE-SW direction and have influenced the observed structural highs in the Arbuckle 

Group . 

Rocks of the Lansing-Kansas City Group directly overlay the Arbuckle Group in 

the Kraft-Prusa field. The contour map of the Lansing-Kansas City Group (Figure 15B) 

shows two broad and gently sloping on the northwest part of the Kraft-Prusa field. These 

highs overlay the structural highs described in the Arbuckle Group in the previous section 

(outlined polygon in Figure 15B). Similar patterns and locations of structural highs on the 

Lansing-Kansas City Group also suggest basement structural influence. 
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Figure 15: Contour maps of formations in the Kraft-Prusa field. A) Top of the Arbuckle. 

B) Top of the Lansing-Kansas City. C) Top of the Heebner. Outlined areas show structural highs. 

The dots show well locations 

 

On the contour map of the Heebner Formation (Figure 15C) two structural highs 

are observed, similar to the structural features on the Lansing-Kansas City Group. These 

observations suggest similar structural influence of underlying structures on the Heebner 

Formation. 
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6.3.4. Summary  

Basement structural influence on the direct overlaying formations (e.g., the 

Arbuckle Group) is observed in all three fields. The basement structural influence 

observed in the Bemis-Shutts and in the Ellis Cluster field are almost similar. In both 

cases, it is observed that anticlinal features are bounded by faults. In the Kraft-Prusa 

field, most of the observed structural highs are aligned in NE-SW direction and the 

influence of the basement structural highs on the overlaying strata is noticeable. 

Structural features on the Lansing-Kansas City Group and on the Heebner Formation are 

not significantly influenced by the basement structures. Instead, structural features of 

these two sedimentary strata (e.g., the Lansing-Kansas City Group and the Heeber 

Formation) overlaying the Arbuckle Group are observed to be influenced by the 

underlying topography and structural features. 
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7. CONCLUSION 

The interpretation of aeromagnetic data of the study location show two distinct 

orientations of structures in the basement of the study area. These are: (1) NE-SW 

trending lineaments, and (2) NW-SE trending lineaments. NE-SW trending lineaments 

associated with the MRS are observed to truncate the NW-SE trending lineaments in the 

southeastern part of the CKU. Two basement structural highs are identified in this study 

which are known as the Russell and the Rush rib.  

The depths to basement were estimated from the aeromagnetic data using the 

Source Parameter Imaging (SPI) method and from contour maps of formation tops. The 

estimated depths from the SPI vary between -112 m (-368 ft.) and -1187 m (-4232 ft.) and 

the depths from the basement tops contour map vary between -441 m (-1445 ft.) and -627 

m (-2057 ft.) subsea. The accuracy of estimated depths from the SPI compared with the 

actual depths to basement from the well log data is within -22% and 10%. 

The influence of underlying basement topography and basement structures on the 

pre-Mississippian strata (the Arbuckle Group and the Simpson Group), were observed in 

all three fields. Structural features in the pre-Mississippian strata are mostly anticlinal 

features, which appeared to be influenced by faults bounding the Russell and Rush ribs. 

On the other hand, the structural features in the Kraft-Prusa field are more influenced by 

basement topographic high or basement hills. 

Structures in the Arbuckle Group influenced post-Mississippian sedimentary 

layers (the Lansing-Kansas City Group and the Heebner Formation) overlaying it. The 

similarities between the trends and shape of structural features in the Lansing-Kansas 

City Group and the Heebner Formation are notable in the Ellis Cluster field and the 
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Kraft-Prusa field. However, no significant influence of underlying structures on the 

Lansing-Kansas City Group and the Heebner Formation in the Bemis-Shutts field was not 

observed. 
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