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INTRODUC TION

The purpose of this investigation has been to determine the
variations of the first, second, third and fourth moments as
functions of distributions of masses and areas. These moments
were found about & line or plane perpendicular to the horizontal
axes of the fipgures, and at various distances along the axes. For
a complete understanding of the problem, an explanation of various
terms will be made in relation to mechanics and statistics.

In mechanics the first moment of a force, or torque, is known
to be the product of a force and its lever arm. The sescond, known
as the moment of inertia, is the product of the force and the square
of the lever arm. For higher moments the lever arm is raised to
the power corresponding to the moment and multiplied by the force.
The lever arm of a force is the perpendicular distance from the linse
of action of the force to the axis of rotation. The radius of gy-
ration of a body whose moment of inertia is I and whose mass is I
is defined by the quantity 1[57@: The radius of gyration equals the
distance from the axis at which a particle of mass M must be placed
in order to have the same moment of inertia as the original mass.

The center of gravity of a body is that point about which the
algebraic sum of the first moments is zero. In other words, the
center of gravity of a body acted upon by gravity is & point, such
that, no metter how the body is placed, it will not tend to rotate

about a fixed horizontal axis through the point. The center of



gravity, the center of mass, the center of inertia and the centroid
(assuming gravitational lines parallel) are one and the same point,
but the center of matter is not necessarily the same. If a body has
a ggometrical center, that point is the centroid and any plane or
line of symmetry must contain the centroid,

Statistically the first moment about a perpendicular line through
the horizontal axis is the frequency multiplied by the distance from
the line. The second order momemt in statisties is the frequency
multiplied by the square of the lever arm or distance. Likewise higher
moments are found by raising the lever arm to the power of the moment
and multiplying by the frequency. "A frequency distribution is an ar=-
rangement which shows the frequencies of the values of a variable in
ordered classes.":

The first step in the procedure for developing this thesis was
the setting up of integrals within definite limits. These integrals
reprasent the first, second, third, and fourth moments taken with
respect to lines or planes at regular intervals through the following
bodies: homogensous and heterogeneous bars, a circle, an ellipse, a
parabola, end a cons. The integrals were solved and the resulting
moments, as a function of the distance along the body, were plotted
on graph paper to show the nature of the curves formed. The results
for the various bodies wers compared and generalizations were made.

For statistics the first moment about the origin gives the mean

l. Rietz, H. L. Handbook of Mathematical Statistics, p. 20.




value, However, the most important moment about the origin is the
sacond moments. The square root of the second moment about the
arithmetic mean is ~alled the standard deviation. The third and
fourth moments are usually expressed in terms of the standard de-
viation. In general, the second moment 1s & measure of dispersion.
It shows how widely the data is spread out on either side of the
mean. -The standard deviation is the physicists "radius of gyration."
From the third moment one can determine the "skewness," the bulging
of & distribution on one sids more than the other. From tha fourth
moment is found the “kurtosis." A distribution has kurtosis if the
material is spread out on either side to a much greater distance than
the extent of the standard deviation.

The author of this thesis wishes to acknowledge all sources of
informetion used in its preparation. Hse is especially indebted to
Dr. C. Te McCormick, professor in charge of thesis, for the valuable
assistancs which he gave so kindly during the writing of this treatise.
He also wishes to express thanks to the following members of the
faculty of Fort Hays Kansas State Collage for helpful suggestions and
materialss Professor E. E. Colyer, Dr. F, B. Streeter, Dr. George A.

Kelly, and Dr. H. A. Zinszer.



CHAPTER I

Variation of First Moments

The demonstration of moments can be most easily understood by
beginning with the first moment. The effect of this moment is to
produce rotation around the axis with respect to which the moment is
taken.

The product of the mass m, concentrated at a point P, by the
disteance x of P from a given point, line or plane, is called the
mass-moment, simple rotation or moment of the first order of m
with respect to the point, line or plane. Denoting this moment
by G, we have

G = mx
If a system of points Py, Py,eee, Py, having masses m;, mp,ee.,
m,, respectively, be referred to Cartesian coordinate axes, the
moments of the system with respect to the three coordinate planes
are respectively

n n n 1
G’z= Z m, X; , Gzyx= Z m;¥; s ny: Z m;z;e
i=1 i=1 i=1

To begin with a very simple illustration, the first moments of a
homogensous bar, (Fig. 1 and 8), of constant density k and of length
a8 will be found. The moments are found about lines perpendicular to

the x axis and at various intervals along the axis.

Y Let X = the x - Coordinate of the centroid.

0 + Gyz= moment of mass with respect to the YOZ plane = NxX
z Where M = mass of the uniform bar

Fig. 1

l. Love. Differential and Integral Calculus, third edition, p. 204.




M - ka, dm = ¥k dx, m = k (Ax)

[x dm

xy (amy )+ xz(amp) +x3(amg) +eeoe + xn(am,) approximately true.

¥x

%

= x,(kax;) + xp(kaxp) + x5(kaxz) 4 ... +x,(kax,) approximately

true .

With n fairly large, this is approximately true if elements of
mass are not equal and also if the lengths of x, i.e. x;, x,, x3, ete.
are telen anywhere in the elément (not necessarily at midpoint or
center) but as n-paknd x»o this represents exactly Mx, that is

n
VE = lim 2 Joxg(axp) + kxp(axz) + kxg(axz) 4 oo + kxa(4x,)

n*o’ 1
a.
- linm Z kx; (ax;) = k [ x dx = [kxz/ZJ
neei=l =

= e?/2 = 1/2(ka) & = 1/2 Ma

=

it

a/8, which is true for a uniform bar with any shaped cross

sactional ares,

The first moment, Iy, about the origin may be determined by
a a
Iy= fo kx dx = [kxz/zjo - ka®/2 = ¥a/2
The first moment about & line perpendicular to the axis and through

the point a/8 could be determined by

[ kx dx +[ k(x-a/8)dx = Ec:x‘/2] + fix*/2 - kax/B]
= 49ka* /128 + ka®/128 - ke?/64 = 48ka’ /128 = 3¥a/8

A simpler notation that gives the same result is

Iy= L e /b s [ix*/2 - kax/a]:. xe2/2 - ka®/8

= 38> /8 = 3Ma/8



The first moment about a line through the point a/@ is
a a
2
Ij sj; k (x-a/4) dx = [kx /2 - kﬂX/QJo
= ka?/2 - x8%/4 « W%/a = va/a
The moment about & line through 3a/8 is
& 2 a
Ty =}; k (x-38/8) dx = [kx%/2 - Skax/S]a
= kn%/2 - 3ka2/8 = m?/8 = Ma/8
The moment about a line through a/%, the center of mass, is O.
a &
Iy =[ k(x-8/2) dx = [kx%/2 - kax/2] = @2/2 - 2/2 = 0
0 o
The moment ebout a line through Sa/b is
[ a
Iy = [ k(x-58/8) dx = [lo®/2 - 5kax/8
gy (x-58/8) dx = [lx*/ ax/_L
= ka?/2 - 5k@%/8 « -Ma/8
The moment about & line through 3a/4 is
a 2 x
Ty = [ k(x-3a/2) ax = [kx?/2 - 3kax/a],
= ka2/2 - 3xe2/4 = -Ma/2
The moment about a line through 7a/b is
a 2 @
Iy =j; e(x-70/8) dx = fix®/2 - 7xax/8);
= x?/2 - Tke%/8 = -3Ma/8
and the moment about a line through & could bs considered as
A 2 a
Ty =fo k(x-a) dx = [ix/2 - kmx]
= x%/2 - ka% o /2
A graph of these results may be found at the end of this chapter.
When plotted, the results determine a straight line.
A slightly more complicated problem may be obtained if we atiempt
to determine the moments for a heterogensous bar, (Fig. 2 ard 9), whose
mass variss as the distance from one end, indicated by point o in Fig.

2.



Let 2a = length and ¢ = density
F="kx = v (2a) dM = kx dx

% M = ka (2a) = 2ka®

20 2a 2
or M = d> = kx dx = 2ka
[« 0

The first moment about the orimin would be
2a. 2a
Ig= : - [1/33] " = 3 -
4 [o x(kx)dx = [1/ Jo 8/3 ke = 41a/3
The first moment about & line through 8/4 is
2z 22
2
Iy=f (x-a/t)kx av = /5 - kax /¢].
= 8ke3 /3 - ka? /2 = 13 Ma/12
The first moment about & line through a/Z 15
2a Za
Ty =[a (x - 8/2)kx dx = [I<%/3 - kax"/tl:’o
= 8m3/3 - w?- 5 1a/8
The first moment about a line through 3a/4 is
2a ; 2a
Iys= }; (x - 38/4 kx dx = Ecx3/3 - Sk‘axz/SJo
= ka? (8/3 - 3/2) = 7.a/22
The first moment absut a line through a is
2 2a
Ig =fo a—(x - a)kx dx = [1(:(3/3 - kaxz/'c']o
= ¥ad(8/3 - 2) = Ma/3
The first moment ebout & line throu-h 5&/4 is
2a 3 2,722
Ig =f‘ (x - 5a/4)kx dx = [kx"/3 - Skax /ql
= ka3 (8/3 - 5/2) = M /12
The first moment about & line through 3a/2 is
2a 2a
3 2
Iy =fa (x - 38/2)br dx = [kx7/3 - 3kax /gn

=kx? (8/3 - 3) = - Ma/6



The first moment about a line through 79./4 is
24
; 3 2,72~
Ij:/a (x - 78/4) kx dx = [ /3 - Tiay /8]°
= ka? (8/3 - 7/2) = -5 Ma/12
The first moment about a line through 2a is

2a o
lg =fo (x - 2a) kx dx = [kx’/s - ka)ﬂ:

= ka3(8/3 - 4) = -2 Va/3

In a similar manner the moments for a heterogeneous bar, (Fig. 3
and 10), whose mass varies as the square of the distance from one end

may be determined.

9
Let 2a = length and &= density
x
9 e k= dM = kx* dx
2o 2a
2 M ,/ kx? dx = [1*/3] = 8 ka®/3
Fig. 3 2

The first moment about the origin would be
2a 2a
. 152 o A 4 _
Ij _jo. x(kx®© dx) =[1 £ /4]0 24 a¥ = 3 Ma/2
The first moment about a line through a/4 is
2a. 24
= l 2 . 4 _ 3
Iy 'jo (x - a/4)kx? ax [kx /4 - xax /12]0
= 4xa? - 2?/5 = 10/5 w? - 5 M/
The first moment about a line throush a/2 is
2a za
- F 4 = find
Iy =fo (x - a/2)kx? dx = E'_x /4 kaxa/'tz]o
z4* -4 10t/s -8 ?/3 -1
The first moment about a line through 39./4 is
24 3 2a.
Ty =}; (x - 38/4)kx* dx = [ix?/a - 3kax /12_L

- 4ka?® - 2ka? - 2% - 3 M/



The first moment ebout & line through & is
Ig= f (x - a)*x%dx = [fx4/4 - kaxs/i?]
= 4k - 8 1*/5 - 4 m¥/5 . Va/2

The first moment ebout a line through 58/4 is
Ty = [ (x - 58/4)kx® ax = [kx"/4 - 5kax’/12]:"
= 4k - 10/3 ka? - 2 xa?/s - wass

The first moment about a line through Sa/é is
Iy -[m(x - 8a/2)kx? ax = [ix®/a - kax’/z_]:a'
= 4ka? - ar? . o

the first moment about a line through 7a/4 is
Ty= j T 78/4)kx? dx = [kx?/a - 7kax3/12]ﬂm
A LY B R N SR )

The first moment about & line through 2a is
Iy= 0“(-:( - 2a)kx® g% = Erx4/4 - 2kax3/3_7:&

=4k® - 16/5 ¥ o - 4 katsz oo Va/2

A similar problem is that of finding the varistion of the moments
of area of an ellipse, (Fige 4 and 11), about lines perpendicular to
the axis and at various intervals along the axis.

Let the general esquation for an ellipse be

(x - a)2 /a? -ivyz/bZ =1

J

Lh Then y = i-b/a 'VZax -z
X 2a
i ZL.bA Yeax - =% gx

A =

2{;/& Kx - a)/%] J2ax - x> 4 b/a (a%/2) sin-z Kx - a)/@l}

ab (/2 4+ M/2) - s

]

Fig. 4



The first moment of area about the y axis is

2a
Iys= / x+b/a Y2ax - x* dx = [ 2v/38 ¥(2ax - x2)hp *

2bfu Zax - x2 dx
[ 2v/5 1/(—2;-_;7]0&4’ 2o (x - a)/2 ¥Eax - == +
e2/2 sin” (x - a)/a]
0O +2b (M2 - M/a) = b= Aa

The first moment of area about the line a/B is
Ig-= 2[ (x - a/8) b/a Y2ax - x2 ax = 2b/e./ x 12ax - x* dx -
b/4f 'fZax - x% dx
20
[— 2b/3a ¥(2ax - x?) ] +2bf ax - x° dx—b/t}{ ax - x°dx
[- /58 ¥(zax - x2)° # 70/a « (x - a)/2 Yoax - == +
2a
o2 sin~? (x - a)/al
0 - 7o/a[e*/2 M2 - a2 (-8/2)] = T /8 = 7/8 e
The first moment of area about the line a/4 is
15-2/ (x - a/4) b/a Y2ax - x dx=2b/a/ VZa__x-:de-
2e
b/ZI 2ax - x* dx
2a- 2a
[~ 2v/3a Y(zax - xz)’L + 2b£z7§ax - x%4dx - b/Z[ Yoax - x%a-
2o
[— 2b/3a  Y(2ax - xz)3]° + E’;b/z'(x -a)/2'fax - X2
LY ~1 /]2“
8%/2 sin” (x - =) YA
0+3/2 [62/2:0/2 - a*/2 (- M2) = 5va"Ma = 3/2 ha

By a similar method the moments may be found about lines through other

1}

L1}

11}

points along the axis

About line 3a/8 I4= 5/8 As
‘bout line a/2 Ig=1/2 An
About line 5a/8 Iy=3/8ta

About line 3a/4 Iy=1/4 ke



About

About

About

About

About

About

About

About

About

About

line

line

line

line

line

line

line

line

line

line

78,/8 Iy
a Ig
9a/8 Iy
5a/4 Ig
11a/8 Ig
3a/2 Iy
13a/8 14
7a /4 Iy
15a/8 Iy
2a Ij

A similar problem which gives identical

the moments of the area of a circle, (Fi-. &

‘J,Hl #11

= 1/8 As

=0

results is that of finding

and 12), a special form

1/% A,
1/2 Aa
3/8 Aa
1/2 Aa
5/8 Aa
3/4 Aa
7/% Aa

Aa

of the ellipse, abouk lines perpendicular to the axis.

C &

I

ar- "

Fig. &

The first moment of area about the y axis is

Ij= 2];2‘3( 2ax - x* dx = - 2/3 ¥ (2ex - Xz)a + Za/
(]
[; 2/3 Y(2ax - x2)3 + 28 (x -a)/2 Y2ax - x* +

L 23

2
Let the equation of the circle be (x - a) +y?

Then y = ¥a? - (x - a) =% ¥2a> - ==

If A =« area

A = 2foza-y dx = 2{272&3( - x% dx
2 [(x - 8)/2 f2ax - © - &*/2 sin? (x - a)/a]:a'

at [ﬂ/Z - (- ﬂ"/Z)J =fte?

L 2a
a? sin™ (x - a)/al

3
a

[n/2 - (-n/2)] = e pe

24
Pax - x=dx

a

2



The first moment about & line throu-h a/f is
2a
Ty = 21 (x - a/R) fZaxy = x= dx = - 2/3 f(2ax - )2 +
2
2a[z;§ax ~x® dx - a./ﬂ:[‘ ax - x= dr
[— 2/3 Y(2ax - x2)° 4 7a/4 (» - a)/2 Y2ax - x* - 7Ta/e (a®/2)¢
4 -1 ( )/]2‘
sin - 8 E\‘
=1/8a% [z - (-1/2)] =7/8 8
Tha first momen: abwut a line throuth a/4 is
2a
Tj-.- 2{ (x - a/4) ¥Zax - x% Ax « - 2/3 f(Zax - x*)
2a )
+2al fZax - x2 d —a/le ax = x° dx
« [- /3 Y(2ax - x*)® +3/2 (x - n)/2¥2x - ¥4 3/2 (a*/2)
_1 g 2a
sin™ (x - a)/@L
=3/aa® [M/2 - (-1/2)]=3/a T3/t he
Tha first moment ab-ut a line throuh 3a/8 is
za
lys= 2}; (x -~ 3a/8) f2ax - xT dr = - 2/3 '}/(Zax - x4+
zZa a :
2a}; {2ax - 7> dx - 3&/4[2 feax - x* d
= [— 2/3 ‘V(&ax - x')" 4+ 5a/4 (> - a)/2 ¥oax - x> 4 5a/4°
(a2/2) sin~? (= - a\/&l:‘
= 5/8 & [f/2 - (- #/2)]= 5/8 & e 5/8 ha

In & similar manner the followin smants may be datermined:
About line a/2 Iy=1/2 An

About line 5a/8 Igs 3/8 Aa

About line 3a/4 Tgal ‘4 Aa

About line Te/8 Iy = 1/8 Aa

About line a I4=0

About line ‘a/8 Ty = - 1/8 Aa



About line 5a/4 Ig=-1/4 Aa

About line 11a/8 Iy=-3/8ha
About line 3a/2 Iy=z-1/2 Aa
Abovt line 13a/8 Iy=-5/8hAa
About line 7Te/4 Igy=-3/2 ha
About line 15e/8 Ig=- 7/8 Aa
About line 2a Ij = - Aa

To teke a figure such as a parabola, (Fig. 6 and 13), which is
not symmetrical about the ce ter of gravity the moments of area about
lines perpendicular to the axis of the figure will be found to differ
slizghtly from those of the ellipse and circle. Only the area betwesn

the limits O and E_will be considered,

1 Let the equation of the parabola be y2? = 4ax
] xTheny=:L'2ra_5r.'
0 a
“ @
Astode-4ﬁ[ ﬁdx
a

=ata 2/s %] =8/5a

"6

The first moment about the origin is
Iyz2f xydx=41faT£ x7* dx
= 8/5 8% = 3/5 Aa
The first moment about the line a/8 is ]
(= all-72 % yaere:
15=2[ (x - a/8) 21'"axdx=4ﬁ£ X dx - a /2£x dx
= [(87a/5) 7. (0M/3) x¥] = 8/5 a3 - &% /3 = 19/15 a¥ = 19/40 Aa
The first moment about the line a/4 is
a
a < 3
Iy-= an (x - 8/4) 287 dx = [(8’5/5) x/z- (2 a%/s) x/é_]a

=8/5a7 - 2/38% «14/15 8% = 7/20 Aa



The first moment about the line 3a/8 is
Iy = 2[0"(;( - 3a/8) 2/a% dx = [(875/5) x *- ¥ x”‘]:
=8/5 6 - o) «3/5 e’ - 9/20 ha

The first moment about the line &/2 is
Ig = 2f(x - a/2) 2055 ax = [(s¥5/5) - 4f3 oK x;‘_lq
=8/58° - 4/38> «4/15 2 = 1/10 Aa

The first moment about the line 5a/8 is
Ty= 2L4(x - 5a/8) 298X ax = [(8f5/5) a s a%xqf']:
=8/5ad -5/38% = -2a%/15 = - 1/40 ha

The first moment about the line 3&/4 is
Iy= Zfoa(—x - 3a/4) 2% ax = [(8f5/5) x72- 2 a Ve YE[©
=8/58° - 2a% = - 2/5 8% = 3/20 Aa

The first moment ebout the line 7a/8 is
Iy = 2 [(x - 7a/8) 287 ax = [(sr=/s) 2 7/3 a%xa"]:‘
=8/68% - 7/380 « - 11/15 a3 = - 11/40 Aa

The first moment about the line a is

[(e¥5/5) e 8/3 a7 x%j,

=8/58 -8/3a%a-16/152” = - 2/5 Aa

a.

1]

Ig = Zl;ﬁ(x - a) 2¥8% dx

& slishtly more complicated problem is that of finding the vari-
ation of the moments of the mass of the cone, (Fig., 7 and 14), ebout
planss perpendicular to the axis and parallel to the base of the cons,

In the figure y eguals radius of the cone and 2a

equals altitude of the cons.



?K _____ y/h = vl./2a or Yy = ‘w/?.a

»x and yz - .‘12:52/4&7’
2q 2a
M =£ Ty*dx =1yh"/4a*/}‘ dx = [#n*/12a> x’J‘

= 8Mh%a3/120% - 2/3 fra h*
Fige T

The first moment of the mass about a plane through the origin or
vertex of the cons is

2aifiiia 2 piloii i al 2 e

Iy= [ xpy® dx = h*/sa f){ dx =[nh /16a® x*]

= fth* a% = 3/2 ka

a.

The first moment about a plane through a/@ is
Ty -fom(,x - a/4) ry® dx = #h*/2a® fx’ dx - #h*/16a [ x* ax
= [#n*x*/162* - ﬂ‘hzx’/48a]:q- =#h*a® - ph*a?/6
= 5/6 #h*a™= 5/4 Va
The first moment about a plane through a/% is
Iy = fozn&x - 8/2) py? dx = #h*/4a? fxa dx - h*/8a Ixz dx

’ aa
[Pn® xf16 o - n?x’/24] = pn*a® - #n*a®/3

2/3 7 h*a® = Ma

By similar integration the moments may be found about planes

through other points along the axis.

About 3a/4 Iy = 3/4 Ve
About a Iy=1/2V¥a
About 58/4 Iy=1/4 Ma
About 3a/2 Ig=0

About 7a/4 Iy=-1/41a
About 2a Tyl 1/2 va

The following graphs illustrate the results that have been obtained:
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CHAPTER IT

Variation of Second Moments

The moment of inertia, Iy, of a body about any axis equals the
moment of inertia, Ig, of the body about a parallel gravity
axis plus the mass of the body multiplied by the squars of thae
distance between these axes.

The gravity axis passes through the center of srea (or cen-
troid). To calculate the center of mass of a semi-circuler
flet plate of radius & &s in Fig. 15, we take the axes.

Y

4 From symmetry the center of mass lies on the X
dx axis, i.e., as we have chosen our axss
X
AR -
0 Vo=

A
{3

}E dm/yam SRR

Figs 15

Tow dm = P dA, where d A is an arca slement and P is the super-
ficial density (supposed in this case constent). Then X reduces
to the center of area (or rentroid as it is often called), viz.,

X e J& da/A IT =2
where A is the area of the plate.2
Lindsay3 also shows the daveldpment of the general gorm for finding
the moment of inertia.

A special case of & general law called the theprem of parallel
axes may be stated as follows: The moment of inertia of a rigid
body about any axis is equal to the moment of inertia “bout a
parallel axes through the center of mass plus the product of
the mass of the body and the squere of the perpendiculer dis-
tance between the two axes. From Fig. 16 we may prove the
theorem for the genseral case by taking the z axis as the axis

l. Miller and Lilly. Aralytic Mechaniecs, p. 214,
2. Lindsay. Eﬁysical Mechenics, pe 152,
3. Lindsay., Fhysiecal Mechanics, p. 175-176.




of rotation end letting C with coordinates x, ¥s z be the center
of mass. Treating the body as a set of mass particles, let us
z suppose that a partiele m with coordinates x;, Vi
Z;, in the original system has the coordinates 2k
y;- s z;when referred_to & set of parallel axes through
C. Wow since x' =y’ = z' = 0, we must have
X Img x =fm; yb -3¥mg 2z , II -3
7from the definition of center of mess. By definition
the moment of inertia about the 2z axis is

[+)

$ie. 16
I= $m; (x;z-l-yzz) IT - 4
4 xX¢ .-.x,’_-;, VR =y'£ +Sf—, IT - 5
and hence

] —2 - - . -
I ajfm (x;2+ yél) + (x + yz) Em; + 2xEn; x; <+ 2yEm; y; II -6

Now the last two terms of II - 6 vanish by virtue of II - 3, Then
Zm; is the total mass of the body, while %2 4 y2= d*, where d

is the perpsndicular distance between the z and z' axes. =m;-
(x}z + y"'z) is the moment of ine-tia with respect to the 2z’ axis
(i.e., axis through center of mass parallel to the z axis). Hence
in general

I=I¢-md2. o @

Rietz? gives the following method of finding higher moments:

g
The nth moment, Mn, is defined by Fn = oX™y dx, where y dx is
an element of area, and x the distance of that element from the
y - axis.

The center of mass of a uniform bar of length a, Fig. 1, may be

found by

x = fx au/ ﬁiM ./'kx dx /ﬁ(dx ’[k—;le—z]‘

gip 2o o a/2
ke,

Whers M = ke and dM « kdx
To find the moment of inertia of the bar with respect to & plans
perpendicular to its axis and through the center of gravity we have
% % s
Te= [ kx?ax 4| kx®ax = Zk[ x2 dx
(- as (] 0
= Zk [xa/zl’ = k&3/12 = 1/12 Maz

4, Rietz, H. L. Handbook of Mathematical Statistics, pe. 15.




Using the generel formula, II - 7, to find the moment of inertia
about x = 0
Io=1/12 M + ¥ (a/2) = 1/5 va®
The moment of inertia sbout x = a/8 is
Tap = 1/12 Ve + M (38/8)% = 43/192 wa*
The moment of inertia about x = a/4 is
Tag = 1/12 Va* + M (a/2)* = 7/48 va?
The moment of inertia sbwt x = 3a/8 is
Tagg= 1/i2 Me® + M (a/8)* = 19/192 Ma®
Similarly the moments of inertia, Fig. 17, about planes on the
opposite side of the center of mass are:

Iss= 1/12 Ma® + U (a/8)° = 19/192 Vel

I3 = 1/12 Me?+ M (a/4)® = 7/48 wa®

1/3 1a?

I, = 1/12 ¥a® + ¥ (a/2)

In contrast to the homogensous bar, the heterogeneous bar, Fig. 2,
whose mass varises as the distance from one snd, will be considered.
o= kx = (2a) 0o Tap-= X8
M =2 (ka) = 2 ka? aM = kx dx

M

dzlz.x dx = 2 ka?

Since this is a heterogeneous bar, the general formula used for
the homogeneous bar will not be applied; but each moment, Fig. 18, will
be worked out separately.

The moment of inertia with respsct to a plane through the origin
is

I 2az(kxd)-[kxz/42“' 4 xm* = 2 ya®
j=ox PN _70 = = i



About a/4
oz 2 4 3 2a
Iy :/; (x -~ a/4)" kx dx = [kx*/2 - xax’/6 + ka"xz/sz_L
= 61/24 * . 61/48 Ma?
About a/2
Za 2 24
Ty= [ (x - 8/2) kx dx = [kx‘/& - kax3/3 + ka"xz/BJo

= 11/6 ¥ = 11/12 wa?

About 3a/4
2a
I, =I (x 3a/4)2 x dx = [kx4/4 = kax3/2 + Qkazxz/SZJ:‘

= 9/8 xa* 2 2/16 va?

About a
2a- g 22
Ty =£ (x = a)z kx dx = [kx"/4 - 2kax3/3 + kazxz/gjo
= 2/3 xa* = 1/3 wa®
About 5a/4
24 2 4 3 2 x &=
Ig .fo (x - 58/4)" kx dx = [kx /4 = Skax”/6 ¢4 25ka x’/ag:]o
= (11/24) xa* = (11/48) wa?
About 3a/2
24 2 4 3 2 2 2a.
Iy =[ (x - 3a/2)" kx dx = [kx*/4 - kax” + 9ka®x /8]0
=1/2 a® < 1/2 va*
About 7a/4
' 2 4 3 2z 2 =
I,:[ (x - 7Ta/4)" Bx dx = [kx"/4 - Tkax"/6 + 49ka®x /521
= 19/24 xa* - 19/48 ma*
About 2a
24 2&
Igs= /o (x - Za):‘1 kx dx = E(x“ 4 - 4xex?/3 + 2kat szo

= 4/3 xa¥* = 2/3 ua®

Next the moments of inertia, Fig. 19, of the hesterogeneous bar,



Fig. 3, whose mass varies as the square of the distance from one end
will be considered.
Let 2a = length and ¢ = density
¢=kx aM = kx* dx
2a 2a
¥ o= f ctdx = [x3/3] = 8/3 ka?
o 0
The moment of inertia with respect to a plane through the origin
is
za g
. 2012 L Cy _ § _ 2
Iy _fo x*(lx3x) = [kx /5_L = 32/5 xa® = 12/5 Ma
About a/4
za
2
Iy =[0 (x - a/4)" xx% ax

= 137/30 ka¥ = 137/80 Ma?

[ix%/5 - xax*/s +xa*x%/ag]

About a/2

I_’/ :IZ‘EX - 9(/2)z kx? dx

= 46/15 w7 = 23/20 va®

2 a
[ka/S - kax4/4 + ka® x‘z/12]a

About 3a/4
Iy -_-foz‘(x - 3a/4)% kx? dx = [1%/5 - 3umx?/s + 3ka‘x’/1§7:*
= 19/10 xa” = 57/80 ua®

About a
Ig = fozfx - a)? % ax = [kx""/s - xax*/2 4+ kazxa/?)]:“-
« 16/15 ka® = 2/5 Ma®

About 5a/4 _
Igs= £2¢(—x - 5a/4)" kx? dx = [kx’/5 - sax/8 + 251:&"1’/4?]:4'
= 17/30 ka¥ = 17/80 ua®

About Ea/?
Iys { Z‘L(x - 30/2)% 1x® dx = [kx’/5 - 3kex®/a + Ska1x3/4_22¢

= 2/5 ¥ = 6/40 ¥a*



About Ta/4
Ij :lz?x - 7a/4)z kx% dx = [}:XS/S - 7kax4/8 +49kazx3/48]:"
= 17/30 a7 = 17/80 va?
About 2a
Ig= Lza('x B850 ¥ ax = [ix*/6 - xax* + axa® x’/s_']:a'
= 16/15 k% = 2/5 va*
To find the moments of inertie, Fig. 20, of an ellipse, Fig. 4,
the general form is used.
Ify = % b/a ¥2as - 2
2a-
A = Zl b/a Y2ax - x* dx
= ab (M/2 - #/2) = abv?
The moments of inertia about a, a line through the center of
cravity, is found by
Ip=2 fou('x - a)* b/a Y2ax - x* ax
Which when integrated becomes
I = [(1 - x/a) b/2 Y(2ax - x2)° +ab (x - a)/s Y2ax - =+
a
a>b /4 sin (x - a)/a]:
=04+ 0+8a°b/s (M) = 1/4 Aa”
The moment of inertia about x = O is
Ig = 1/4 Ae* + As* - 5/4 As*
The moment of inertia about x = a/4 is
Tag = 1/2 ha® 4 A (92*/16) = 13/16 ha®
The moment of inertia about x = 2/2 is
Tap = 1/4 Aa® + A (a%/a) = 1/2 aa®
The moment of inertia about 3a/4 is

Tasg = 1/4 Ae*+ A (8%/16) = 5/16 ra*



Similaerly the moments of inertia about planes on the opposite
side of the center of mass are:
Tse/= 1/4 Ae™ 4 A (2%/16) = 5/16 ha™
I3ef = 1/4 gd‘ 44 (a%/a) = 1/2 A"
Iraf= 1/4 Ae> 4+ A (%" /16) = 13/16 Aa™
Tpa = 1/4 Aa* 4 A (2%) = 5/4 Aa®
The moments of inertia, Fis, 21, of a circle, Fig. 5, which is
a special form of an ellipse gives the same results as those found

for the ellipse when the limits of each are O and 2a.

17y = % fZax - x=
A = 2£z‘mdx = pa*
The moment of inertia about a line threugh a, the center of
gravity, is
Te = ZI:"(X -a)t m dx = 1/24 pa*
The other moments also are the same as the ellipse
Is = 1/4 Aa™ 4+ Aa* « 5/4 pa™
Tay = 1/4 ae* + A (9/16 &%) = 13/16 Aa?

Tag = 1/4 As™ + A (2%/2) = 1/2 aa™

Igaf = 1/4 Aa® + 4 (a/16) = 5/16 Aa*
T3ag = 1/4 Aa™ ¢+ A (2*/4) = 1/2 Aa®
Tre4 = 1/4 Ae® 4 A (9/1682) = 13/16 Aa™

Tpa = 1/4 Ae™4 A (8%) = 5 Aa* /4

3

The mements of inertia, Fig. 22, of a parabola, Fig. 6, may be
found by use of the general formula if the center of gravity of a

definite part of the hody is found.



The center of gravity of that part Af the parabola between O
and & is on a line about which the first moment of this much of the
parabola equals O.

The equation of the parsbola is yz = 4ax and the line throuzh
the center of gravity was found to bs 3/% a3 therefors the moment of

inertia about & line throurh the center of gravity is

2a 2 4 3
Tl zf (x - 3/5 a)* 2 ¥5F dx = 32/175 a% = 12/175 Ae
(]

About O the moment of inertia is-
To = 12/175 Ae* & A (9/25 &™) = 75/175 Aa%

The other moments about perpendicular lines along the axis are
Tafo = 12/175 Ae™ + A (1/4 ) = 223/700 Aa™
Taf = 12/175 As™ + A (4/25 a™) = 40/175 Aa*

Iagg = 12/175 Aa* + A (9/100 a*) = 101/700 Aa™

Ias4 = 12/175 Aa® 4 A (1/25 a®) = 19/175 Ae*
lag = 12/175 Aa® 4+ A (1/100 a*) = 55/700 Aa*
Irefy = 12/175 Aa™ + A (1/100 a*) = 55/700 aa*
Tyag = 12/175 Aa* + A (1/25 a*) = 19/175 Aa?
Iqgf, = 12/175 Aa® + & (9/100 a*) = 101/700 Aa*

I, = 12/175 Aa* + A (4/25 a*) = 40/175 Aa®

The moments of inertia, Fig. 23, of the mass of a cone, Fig. 7,
about planes along the axis may also be found by the general formula.
Since the first moment ab ut 3a/2 was found to be O, the center of
gravity lies on a line through 38/2.

It was found thet yl H h:xz/éat and that

i2a
M =[° #v> dx = 2/3 fa h* in Chapter I.



The moment of inertia sbout a plene through Sa/? is
Ie= oza(-x - 3/2 a)° pyTax = [#n?x%/20a*- 3m*x*/16e +
2a
30023 /16],
- 1/10#n*s3= 3 Ma%/20
By the general formula the following moments may be found:
Io = 3/20 Ma® 4+ M (9/4 &%) = 12/5 Ma?
Ta/ = 3/20 Me® + M (25/16 a?) = 137/80 Ma?
Tak = 3/20 ¥a* 4+ M (a®) = 23/20 Ma?
Isag = 3/20 Na> + 1 (9/16 a?) = 57/80 Ma*
Ia = 3/20 Ma? +¥ (a2/2) = 2/5 ¥a®

= 3/20 Ma® + M (a%/16) = 17/80 Ma*

5
Ny
]

= 3/20 Ma® + M (a%/16) = 17/80 Na*

=
-

X
i

Tpa = 3/20 Ma* + M (e*/4) = 2/5 va?

The following graphs illustrate the results obtained for the

sacond momentss
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CHAPTER III

Variation of Third Moments

In statistics the third moment about the mean of a distribution
curve is a measure of the skewness of the curve; however, since the
general formula for finding the third moment is

Ij :j x3 y dx,
The moment may be found about planes through o“ther points besides
the mean.

The third moments of the uniform bar, Fig. 1 and 24, may be
found in the following manner:

Kbout the orizin Iy = L “%% dx = ¥/t = we’ /2

About a/8 1y = L:k(x - a/8)3 dx + /;71? (x - a/8.)3 dx

or Iy = fo“'k(x - a/8)° ax = k f(x3 - 3/8 ax® +3/64 a*x -

a?/512) ax

Ec(x4/4 - 3ax>/24 - 3a%x°/128 - a’z/512]:'=

e (a%/2 - 3a? /24 + 3a% /128 - a¥/512) = 450Ka® /3072

1]

751a3 /512

A similar method was used to find the moments esbout planss through
other points along the axis.

About a/4 Iy = Sla’ /64

About %a/8 1g= 171e” /512



About a/2 Iy =0

About 5a/8 Ty = -17” /512
About 3a/4 Iy = -5a? /6s
About 7e/8 I4= -751a" /512
About a Iq = -Ma®/a

Third moments of a heterogeneous bar whose mass varies as the
distance from one end, Fig. 2 and 25, are worked out by the same
method as that used for the uniform bar.,

22 4

About the origin 14 = )ﬂ xalcicsdr

(]

2a
= [’ /5], = 32ka’ /5 = 16va> /5

Al 3 2
About a/4 Iy-= J (x - af4)” kx dx - 619Ma /320
About 8/2 Ty = 43Na° /40
About 3a/4 Iy = 169 ¥s® /320
About a Iy = MQB/%
About 5a/4 1g = -Me? /320
About 38/2 Iy = -mia? /40
About Ta/a 1, = -131a*/320
About 2a Ty - -4k /5

Different results will be obtained when the third moments for
the heterogeneous bar whose mess varies a&s the square of the distance
from one end, Fig. 3 and 25, are computed.

- e Tl )
About the origin Iy =/£ % kx dx .
e
- [f/6], = 32:a%/3 = 4 ws®

24 N
3
About a/4 Iy= l (x - a/a) xx* dx = 789Ma’ /320



About

About

About

About

About

About

About

Since

8/2
5&/@
a
5a/4
3a/2
78 /4

2a

k5

v /5
227va? /320
3wa® /10
5Ma? /64
-va® /20
-57ra? /320

—ZMdj/%

the general form of the ellipse also includes the circls,

ths third moments wsre not computed for the circle but only for the

ellipse, Fig. 4 and 27.

The third moment about a line through the origin is

2a
Iy = 2{ Is(b/a) Yeex - x:ad—x o,
= 2b/a [- x Y(2ax - xz)3 /g + 7a/5f x> m dx
0 [

which, when completely integrated and with the limits substituted in

the result

About

About
About
About
About
About
About
About

About

bacomes 71Pa‘b/@ = 7Aaz/4

Igy= 2[02 (x - a/8)3 (b/a) m dx

a/ﬁ ‘

a/a
3a/8
a/2
58/8
3a/4

7a/8

Sa/é

- 6794d° /512

Ty = 634a°/64
Ty = 365As° /512
Iy 7807 fi2

Iy = 17188° /512
Iy= 134a° /64
Iy = 49ha’ /512
i 10

-4940% /512

wx



About 5a/4 Ty = -13A8" /64

About 1la/8 Iy = -1718a° /512
About 3a/8 14 = -7he’ /12
About 13a/8 Iy = -365Aa° /512
About 7a/4 Ty = -63ha” /64
About 15a/8 Ty = -679Ae” /512
Kbout 2a Iy = -782% /2

The parsbola is also a suitable figure to use in studyins the
third moments, Fig. 6 and 28,
The third moment =z2bout a line through the origin is determined
by 4
Iy = zja'x-’ 2 A% dx = [8 ¥a,/9 (x)%l,
= 887 /9 = Aa>/3

About a/10 Iy=2 [:(x - 8/10)° 2% dx = 46578e>/21000
About a/5 Iy = 368A° /2625

About 38/10 Iy = 1735487 /21000

About 2a/5 Iy = 113A6° /2625

About a/2 Ty = 1348’ /840

About 3a/5 Iy = -16Aa” /2625

About 7a/10 Iy = -83As” /3000

About 4a/5 Ty = -145As” /2625

About 9a/10 Ig= -19914a2 /21000

About a Iy = -164a" /105

lastly, the third moments of the cone, Fig. 7 and 29, will be



considered.,

Abcut a plene through the origin the third moment of ths cone is

za . 24
Iy = f ¥ < at) ax = [rnx% 206

About
About
About
About
About
About
'Abqut

About

= spn’et/z - 4’

a/@
a/2

38/4

5a8/4
%8/2
7a/@

28

24
Iy= [ (x-a/t)’ # yPax = 7894 /520

Iy:

Ig=

Iy=

1y

™a> /5
227a? /320
3ma? /10
5Ma” /64
-va’ /20
-57va? /320

-2ved /5

The following graphs illustrate the results that have been

obtained for third moments:



VARIATION OF THIRD MOMENTS

@l

| |
1
WE = 1
= | |
& per -
HO! & _!‘
| l|
 §
L
[
L
1“
— 4 5 o< 7 & 9 & N 12 3 218 8 W B

Fige 25 The Heterogeneous Bar (o varies as d)



8

38

1

=

1

B2

1%

14

a

13

12

1

1}5[33}!, L Ju b G

Raduay

VARIATION OF THIRD MOMENTS (CONT.)

| A




VARIATION OF THIRD MOMENTS (CONT,)

39

¥4

P4

i1

|98 ¥




VARTATION OF THIRD MOMENTS (CONT,)

I

co| £ e Chao
15 [ 8 ) D I HHEHHHH HHHHH
6 ¢ & 9 10 1 122 13 14 115 18




CHAPTER IV

Variation of Fourth Moments

In statistics the fourth moment about the mean of a distribution

1, however,

curve is a measure of the kurtosis of the curve. Harper
gives a different method of obtaining the kurtosis of a frequency dis-
tribution which is
A normal distribution has a kurtosis of 3, which may be calculated
by dividing the first moment to the fourth power by the square
of the second moment .
(Kurtosis) B, = M4/Mz
’
By use of the general formula Iy = jﬂx4y dx, the fourth moments
about various points along the axis of a body may be Founrd,

Considgring the uniform bar, Fig. 1, the fourth moments, Fig. 30,

about planes at various intervals along the axisrmay be computed as

follows:
a
About the origin Ig = [th" dx = [kx‘r/5]o =Ma /5
a @
About a/8 Iy = /‘ xk - a/8)* ax - [o k(x*- ax?/2

+ 3a”x%/32 - a®x/128 + a%/2006) ax

or Ty= 2101a# /20,480
By integration of similar forms other momants are found to be
About a/4 Ty= 6lra?/1280

About 3a/8 1y = 421¥a*/20,480

1. Harper. Elements of Practical Statisties, p. 151,




About a/2 Iy = ¥a*/80

About 5a/8 I4 = 421va*/20,480
About 3a/4 Ty = 611a*/1280
About 7a/8 Iy = 2loum’ /20,480
About a Iy = va? /5

The fourth moments of a heterogeneous bar whose mass varies as
the distance from one end, Fig. 2, differ from the results of the
homogeneous bar since the results for the heterogeneous bar when
plotted, Fig. 31, do not determine a regular curve.

The fourth moment ebout a plane through the origin may be dster-
mined by

Iy =£Mx4 kx dx = [kx‘/es]:" - 32k /3 = 16Ma%/3
By integration of similar forms the moment may be found at any

irterval along the axis.

About a/4 I4 = 35891a? /1280
About /2 Ty = 329va%/240
About 3a/2 Iy = 2111va% /3820
About a Iy = va* /5

About 5a/4 Iy = 83va*/768
About 3a/2 Iy = 47Ma/240
About 7a/4 Iy = 1889ma’ /3840
About 2a Iy= 16Ma? /18

Interesting results may also be obtained by computing the fourth
moments for a heterogeneous bar whose mass varies as the square of the

distence from one end, Fiz. 3 and 32,



The fourth moment about a plane through the origin may be
determined by
A
1 2 g s 7 T ? 4
g= [ xtatax = fo/r]) 0 s 1287 /7 = aque®/r
By integration the moments were found about planes at verious

intervals along the axis.

About a/4 Ty = 32859a” /8960
About /2 Iy= 991a*/560
About 3a/4 14= 6651m* /8960
About a Iy= va’/35
About 5a/4 Ig = 143¥a /1702
About 3a/2 T4 = 39 */560
About Ta/a Iy = 16111a*/8960
About 2a 14 = l6va®/35

The fourth moments for an ellipse, Fig., 4 and 33, «ive results
similar to those for the uniform bar since both are homogenseous
bodises.

About a line through the origin the fourth moment for the el-
lipse is

Iy =2 [ﬁ?c‘(b/a) Vi s
which, when expanded according to the general form in Pisrce's Table
of Integralsl and the limits substituted in, becomes
2116 /8 = 212a%/8
By a similar process the following fourth moments for the

ellipse may be founds

1, Pierce, B. 0. A Short Table of Integrals. Third revised edition.




About
About
About
About
About
About
About

About

8/4
8/2
3a/4
58/4
%a/2
78./4

2a

aspat /32
oaat /16
574a*/256
Aat/s
s7aa* /256
ora*/16
4320% /32

214a%/8

As another example of a heterogeneous body the fourth moment

of the area of a definite portion of a parabola, Fig. 6 and 34, may

be determined.

The fourth moment about a line through the origin is

Iy =2 fwﬂ 2057 dx a[8 fax’ /11]: = 8a°/11 = 3aat/11

Similarly the following moments were obmineds

About
About
About
About
About
About
About
About
About

About

a/iO
a/S
38/10
2a/5
a/2
3a/5
7a/&0
48/5
9a,/10

a

s
o
Y
Iy
1y
T
g

71,04940% /262,000

13,9764a% /144,375

111,22340% /2,310,000

32958a% /144,375
211a% /18,480
33,1084a% /2,665,000
537748% /330,000
4833pa* /144,375
47,8054a% /770,000

12800 /1155

S



In the conclusion, the fourth momsnts of a cone, Fig. 7 and 35,

have been computed.

The fourth moment of the mess of a cons

the origin is
2a
Iy =[’ x* r (n*x*/ae?) dx =
Similarly about a/4
About a/2
About 3a/4
About a
About 58/4
About 3a/2
About 7a/4

About 2a

about a plane through

32 0 1° &0/7 = 48Ma*/7

17 =
I_‘]’

Iy =

Iy:

25,691ve? /8960
991ma* /560
6651Ma* /8960
et /35

1431a? /1792
sara? /560
16111a? /8960

16124 /35

The following graphs illustrate the results that have been

obtained for fourth moments:
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SUMMARY AND CONCLUSIONS

Moments about lines through particular points in various
solids and areas were found in the differe~t mathematical refer-
ences, but in no case were the moments graphed as a function of
the distance along the axis of the given body or surface.

As previously defined, the center of gravity is that point
about which the sum of the first moments is zero. In all of the
oases lllustrated, regardle s of whether the figure was homo-
genecus or hetercgenecus, the first moments about lines egui-
distant from the center of gravity and on opposite sides of the
center of gravity are equal but of opposite sizn. Also when the
lines and planes about which the moments are found are placed at
uniform intervals, the moments for any given figure form an
arithmetic prograssion. The results, when plotted, form straight
lines. From a study of these graphs one is lead to conclude that
the variation of the first moment of any body alang any axis is
a linear funotion. A general empirical formula for finding the
first moment of mass of any body about a line or plane perpendiec-
ular to the axls of the body would bae

Iy = (x - x),
where x is the perpendioular through the center of gravity and M
is the mass of the body. Similarly the first moment of area may
be represented by

Iy = A (x - x),



L

where A is the area of the body. These empirical formulae were
not found by the writer of this thesis in any text book that dis-

cussed moments.

Each of the graphs of the second moments show that the curves
of the results are symmetrical to & line perpendicular to the‘axis
and through the centroid. 1In order to make the curve of Fig. 18
completely symmetricﬁl the moments along the axis must be found be-
yond the end of the bar to the point 8 a/%. Similarly to make Fig.
19, Fig. 22 and Fig. 23 symmetrical, the moments would have to be
computed to the points 3a, 6 a/B, and 3a respectively. These curves

are parabolas of different curvatures.

The third moments of mass or area of the homogensous bar and
the ellipse give curves that are symmetricel with respect to the
centroidal point. The third moments of mass or area of all other
bodies examined did not give a curve symmetrical with respect to
the centroidal point even though the curves might be extended as

for the second moments.

The fourth moments of mass or area of the homogsreous bhar and
the ellipse also give curves that are symmetrical with respect to
the centroidal point, but the curves for the other bodies studied

are not symmetrical.



By a comparison of Fig, 10 and Fig. 14, Fig. 19 and Fig. 23,
Fige 26 and Fig. 29, and Fig: 32 and Fig. 35 it can be seen that
the cone and the bar whose mass varies as the square of the dis-
tance from one end have identical first moments, identical second
ﬁoments, identical third moments and identical Ffourth moments. This
will hold true as long as the altitude and length of the cone and
bar, raspsc%ively, are equal and the moments of mass of the cone
are taken about its axis, because their centroidal points will have
similar locations. Naturally, the circle, a épecial case of the
ellipsea, will always give results corresponding to those of the

ellipse.
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