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ABSTRACT 

Invasion by nonnative plants is particularly prevalent in wetlands. While the 

ecological patterns in wetland plants are well known, it is less well known how   

flooding-related soil conditions influence the physiological success of introduced species 

in wetlands. In chapter 1, effects of flooding were measured in invasive common reed 

(Phragmites australis), reed canarygrass (Phalaris arundinacea), johnsongrass (Sorghum 

halepense), and native prairie cordgrass (Spartina pectinata). The four species were kept 

at four levels of flooding (deep flooding, medium flooding, low flooding, and dry 

conditions), and their responses were measured after 7 and 28 days of treatment using by 

a Li-Cor LI-6400 photosynthesis and fluorescence system. Measurements included light 

harvesting abilities, CO2 fixation rates, leaf carbon isotope ratios, and root anaerobic 

enzyme activities. CO2 fixation and light harvesting abilities in Phragmites were 

maximized at deep flooding conditions whereas they were maximized in Phalaris at 

medium flooding conditions.  Light harvesting abilities in Sorghum were maximized at 

deep flooding conditions after 7 days. However, at 28 days most of the Sorghum had 

died. Native Spartina had the lowest light harvesting and CO2 fixation abilities after 7 

days of flooding.  After 28 days of flooding, light harvesting abilities of Spartina were 

maximized at deep flooding levels, but the rates were lower than Phragmites. In chapter 

2, flooding-sensitive Sorghum halepense and flooding-tolerant Phragmites australis 

(n=5) were flooded to 8 cm depth or kept dry for 7 days.  Transpiration, stomatal 

conductance, boundary layer conductance, and vapor conductance were measured for 

each. Transpiration was significantly higher in drained treatments compared to flooded 

treatments for Sorghum. However, transpiration was significantly higher in flooded 
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treatments compared to drained treatments for Phragmites. Thus, there was a significant 

species x treatment interaction in transpiration. A similar interaction was detected in both 

stomatal and vapor conductances. Phragmites had increased stomatal conductance when 

flooded, which indicated a high physiological tolerance to waterlogged soils. This 

allowed Phragmites to photosynthesize under waterlogged conditions and to be 

successful as wetland invaders. Further information on the conditions that maximize 

stomatal opening for Phragmites can help management efforts. By contrast, stomatal 

conductance in Sorghum was decreased under flooding, indicating a greater sensitivity to 

flooding. The sampled population of Sorghum is therefore not a threat to invade 

chronically flooded soils based on these results. Additional work will be needed to test 

the ability of Sorghum to acclimate to wet environments.  Increased photosynthesis rates 

under flooded conditions, especially in short-term flooding, might help invasive grasses 

to invade wetland settings.   
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PREFACE 

Chapter one is written in the style of Environmental and Experimental Botany and 

chapter two is written in the style of Invasive Plant Science and Management.  These are 

the two journals to which each chapter will be submitted shortly after the defense of this 

thesis. 
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CHAPTER 1: PHOTOSYNTHETIC VARIATION AND CARBON ISOTOPE 

DISCRIMINATION IN RESPONSE TO FLOODING IN NATIVE  

AND INVASIVE GRASSES OF CENTRAL KANSAS 

 

ABSTRACT 

 

Leaf-level photosynthesis is necessary for ecological processes like plant growth 

and reproduction. Moreover, the success of wetland invaders is dependent on 

physiological processes like photosynthesis. Despite the link between physiological 

tolerance and ecological success, effects of flooding on photosynthesis in wetland plants 

is not well understood. In this study, invasive potential was compared to physiological 

flooding tolerance in four wetland grasses. Experimental plants were flooded for 28 days, 

including nonnative, invasive Phragmites australis, Phalaris arundinacea, Sorghum 

halepense, and native Spartina pectinata. They were maintained at four levels of flooding 

(deep flooding, medium flooding, low flooding, and dry conditions), and their responses 

were measured at 7 and 28 days of treatment.  Photosynthetic rates in Sorghum were 

maximized at deep flooding conditions at 7 days, but at 28 days all deep flooded 

Sorghum had died. Photosynthesis of Phragmites and Spartina were maximized at deep 

flooding conditions whereas photosynthesis was maximized in Phalaris at medium 

flooding at 28 days. Photosynthetic abilities of Spartina in medium and low flooding 

were significantly lower than Phragmites and Phalaris. Analyses of leaf δ13C supported 

the gas exchange results. Flooding caused stomatal closure in the C3 species Phalaris, 
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leading to an increase in δ13C. The opposite occurred in C3 Phragmites. As flooding 

increased, δ13C decreased, indicating higher stomatal conductance under flooding.  As 

flooding increased in the C4 species, δ13C in Spartina decreased, but δ13C remained 

unchanged in Sorghum.  Differences in photosynthetic abilities and leaf δ13C suggested 

Phragmites and Spartina were the most flood tolerant of the four species. Phalaris was 

moderately flood tolerant and Sorghum was flood sensitive. Activities of the anaerobic 

respiration enzyme alcohol dehydrogenase in roots also suggested invasive Phragmites 

was more tolerant of flooding compared to the native Spartina. Invasion of grasses in 

wetlands might be helped by increased photosynthesis in short-term flooding. Success at 

the physiological level might be an important clue in determining community-level 

processes in flooded environments. 

 

Keywords: δ13C, Phragmites australis, Sorghum halepense, Phalaris arundinacea, 

Spartina pectinata, dark-adjusted fluorescence, alcohol dehydrogenase. 
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INTRODUCTION 

Nonnative plants are introduced in an area due to intentional or accidental 

methods (Pysek et al. 2004).  Introduced plants can become invasive by reproducing in 

large numbers and dispersing large distances from the parent plant (Richardson et al. 

2000).  Invasive plants can decrease biodiversity and heterogeneity of an area (Kercher 

and Zedler 2004).  Certain areas seem to be more susceptible to invasion than others 

(Mack et al. 2000). For example, disturbance can open an area to invasion (Lavergne and 

Molofsky 2004). 

Invasion by nonnative plants is especially prevalent in wetlands. According to 

Zedler and Kercher (2004), 24% of the most invasive plants worldwide occur in 

wetlands, despite the small amount of land cover classified as wetlands (<6%). Wetlands 

are fragmented and fragile ecosystems (Keddy 2000). Zedler and Kercher (2004) 

summarized reasons for the prevalence of invasive plants in wetlands, including wetlands 

being landscape sinks and the easy dispersal of seeds or plant parts by water or flotation.  

Grasses are common invaders due to their ability to alter ecosystems (Lavergne 

and Molofsky 2004). Wetlands of central Kansas have been invaded by many exotic 

plants including many grasses (Schweiger et al. 2002).  Phragmites australis (Cav.) Trin. 

Ex Steud. (hereafter “Phragmites”), Phalaris arundinacea L. (hereafter “Phalaris”), and 

Sorghum halepense (L.) Pers. (hereafter “Sorghum”) are three common invaders of 

waterlogged soils in Kansas.  The ecology of Phragmites and Phalaris has been studied 

extensively to determine whether these species use flooding as a mechanism for invasion 

(Coops et al. 1996, Miller and Zedler 2003, Kercher and Zedler 2004, Fraser and 
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Karnezis 2005, Fraser and Miletti 2008, Jenkins et al. 2008).  However, no study has 

identified the physiological advantages that allow grasses to be effective invaders.  By 

understanding the physiological reactions to flooding, the processes through which 

Phragmites, Phalaris, and Sorghum successfully invade wetlands will be better 

understood.  

Hydrological regime is considered the most important disturbance that influences 

composition of a wetland (Fraser and Karnezis 2005).  Flooding is a prominent stress on 

plants because it causes the soil to become anoxic. Thus, submerged portions of the plant 

are unable to acquire oxygen from the soil. One common method for measuring 

responses of plants to flooding is an increase in alcohol dehydrogenase (ADH) activity in 

roots (Crawford and Braendle 1996, Maricle et al. 2006).  ADH is an enzyme that 

catalyzes the final reaction in ethanol fermentation. An increase of ADH activity 

demonstrates an increased ability to respire anaerobically, so it is viewed as a measure of 

anoxia tolerance (Crawford 1967).  However, a plant having a lower ADH activity in 

flooded conditions also might indicate it is not sensitive to flooding.  A lower ADH 

activity could suggest the plant can move O2 from leaves to roots to support aerobic 

respiration (Crawford 1967, Maricle et al. 2006).  Therefore, ADH activities are valuable 

for studies on flooding, especially when combined with other measures. 

Species that are better able to tolerate waterlogged soils will have an advantage as 

a wetland invader due to increased carbon gain and growing abilities. Flooding will often 

cause a plant to close its stomata, which causes a decrease in photosynthesis (Kozlowski 

1997).   Stomatal conductance (gs) is a measure of stomatal frequency and the extent to 
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which individual stomata are open. gs influences the rate that water vapor escapes from 

the plant as well as how much CO2 can enter the leaf for photosynthesis. Studies have 

shown a decrease in photosynthesis and stomatal conductance in flooded sugarcane (Glaz 

et al. 2004).  Stomatal closure is expected to decrease photosynthetic rates and decrease 

the internal (substomatal) CO2 concentration.   

Another measurement linking physiological responses to plant performance is 

carbon isotope discrimination. This measure was used to gauge average stomatal 

conductance, and was paired with CO2 fixation rates to measure carbon used in 

photosynthesis.  There are isotopic differences between C3 and C4 photosynthetic plants.  

C3 plants tend to be lighter due to a preference of 12C over 13C (O‟Leary 1988).  The 

opposite is true for C4 plants, which prefer 13C for the initial reaction in photosynthesis 

(Maricle and Lee 2006). 

Absorbed photon energy can support photochemistry, or it can be re-released as 

light or heat.  Absorbed photon energy re-released as light is called chlorophyll 

fluorescence.  It can be measured to determine the fate of absorbed light, and to assess 

changes to photosystem II (PSII). Combining the changes in photosynthetic rate due to 

flooding with changes in chlorophyll fluorescence can explain the fate of excess photon 

energy in stressed plants. 

In the present study, native and invasive grasses were grown under flooding 

treatments in greenhouse studies. Native Spartina pectinata Bosc ex Link (hereafter 

“Spartina”) was included for comparison with the introduced grasses.  Changes in 

photosynthetic rates (A), stomatal conductance (gs), and internal leaf (substomatal) CO2 
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concentration (Ci) were expected among treatments in all species.  By comparing the 

changes in A, gs, and Ci among species and treatments, a relationship between 

physiological response to flooding and plant performance (e.g., growth, reproduction, and 

photosynthetic rates) can be explained.  It was predicted that invasive grasses would 

tolerate flooding better than native grasses, and increased tolerance would be quantifiable 

in root ADH activity.  Invasive species were also predicted to show increased rates of 

CO2 fixation compared to natives.  
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METHODS 

Plant collection and treatment conditions 

All plants were collected in or near the Wilson Lake Wildlife Area (Sylvan 

Grove, KS). Sample tillers of Sorghum and Phalaris were collected in autumn 2008 and 

spring 2009.  Sample tillers of Phragmites and Spartina were collected in spring 2008. 

Native populations of Phalaris arundinacea and Phragmites australis historically have 

been found in central Kansas (Lavergne and Molofsky 2006, Saltonstall 2002). 

Additionally, European genotypes of both species have been introduced to the United 

States (Lavergne and Molofsky 2004).  Hybridization of native and nonnative Phalaris 

arundinacea and Phragmites australis has led to both species becoming very invasive in 

freshwater wetlands (Lavergne and Molofsky 2006, Saltonstall 2002).   

All tillers were transplanted into potting soil. Each pot measured 11 cm x 11 cm, 

and contained one individual of a species. Transplanted tillers were grown 6-12 weeks 

before flooding treatments began. Greenhouse conditions included temperatures ranging 

from a low of 16 °C at night to a high of 41°C in daylight.  Amount of light in 

greenhouse averaged 220 µmol quantum m-2 s-1 (PPFD) in daylight hours and peaked 

near 430 at midday. Relative humidity ranged from 20 to 30 percent during measurement 

times. Sample plants from each of the four species were randomly selected based on 

similar height and age.  Large rubber tubs measuring 50 cm x 36 cm held 12 pots each. 

Three pots of each species were included in each tub, and each of the three pots was 

positioned to be at a different level of flooding.  High flooding had water 6 cm above soil 

level, medium flooding had water saturation 4 cm below soil level, and low flooding had 
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water level even with the bottom of the pot.  Water levels were checked daily and 

evaporated water was replaced in the tubs. Dry treatment samples were kept directly on 

the greenhouse bench so water could drain from them. Each treatment was replicated 8 

times. 

Three measurement cycles occurred, the first in December 2008 to January 2009 

included four tubs and measured deep, medium, and low flooding.  The second cycle of 

measurements was from July to August of 2009, which included four tubs and measured 

deep, medium, and low flooding. The third cycle included 8 samples from each species to 

measure dry conditions in October to November of 2009.  

Gas exchange measurements 

The plants were flooded for 28 days.  At 7 days and 28 days, photosynthetic  

light-harvesting rates and CO2 fixation were measured using an LI-6400 photosynthesis 

and fluorescence system (Li-Cor Biosciences, Inc., Lincoln, NE).  The youngest,      

fully-expanded leaves were used for gas exchange and fluorescence measurements. All 

leaves appeared healthy at the time of measurement. Two types of measurements were 

performed: fluorescence light curve and dark-adjusted maximum quantum yield of PSII 

(Fv/Fm).  The fluorescence light curve measured changes in photosynthetic rate, stomatal 

conductance, and internal CO2 concentrations at nine photosynthetic photon flux density 

(PPFD) levels (2000, 1500, 1000, 500, 200, 100, 50, 20, and 0 μmol m-2 s-1). During each 

light response curve, chamber CO2 was maintained at 385 ppm. Block temperature of the 

leaf chamber was 16-27ºC and the relative humidity was 0.16-0.25. Each measurement 
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was taken 3 to 10 minutes after the light had changed to allow photosynthesis to stabilize 

following the change in PPFD.  

 Data from the fluorescence light curve were used to calculate several parameters. 

The maximum rate of photosynthesis (Pmax) was the highest rate of CO2 fixation 

measured for each plant. The rate of oxygen evolution (JO2) is the rate of oxygen 

evolution from PSII, as calculated from fluorescence measurements. Fluorescence 

measurements give the electron transport rate per PSII (Genty et al. 1989).  Electron 

transport rate was divided by 4 because there are four electrons transported per O2 

evolved (Krall and Edwards 1992).  Quantum efficiency (qe) is a measurement of the 

efficiency with which absorbed photons are used in photosynthesis (Genty et al. 1989).  

qe is calculated as the initial slope of the light response curve, under limiting light.  Net 

qe is a measure of the efficiency of CO2 fixation and gross qe is a measure of the 

efficiency of O2 evolution. Dark-adjusted fluorescence Fv/Fm ratios were measured prior 

to sunrise.   

Stable isotope preparation  

After measurements on the 7th and 28th day of treatment, the next-to-youngest 

leaf was collected for stable isotope analysis. The leaf was removed from the plant, by 

cutting just below the leaf collar. Leaf samples were dried at 45ºC overnight. The 

youngest part of the leaf was used for measurement. The basal 1 mm of leaf was isolated, 

trimmed to 1.0 mg (±0.1 mg) of mass, and was packaged in tin capsules to be sent to 

Washington State University for leaf carbon isotope ratios (δ13C) analysis. δ13C is 

reported on a per mil (‰) basis. δ13C was calculated as: 
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Where R is the ratio of 13C/12C in the sample and the δ13C standard  VPDB (Vienna Pee 

Dee Belemnite) (Ehleringer and Osmond 1991).   

Enzyme extraction and assays 

 At 28 days of treatment, root samples were harvested from each plant.  Roots 

were rinsed in tap water and immediately frozen in liquid nitrogen and then stored at 

-80ºC.  Alcohol dehydrogenase (ADH) was extracted from the roots by using the 

methods of Maricle et al. (2006). The roots were ground in liquid nitrogen and cold 

extraction buffer was added at 5 mL g-1. The extraction buffer was 50 mM HEPES (4-2-

hydroxyethylpiperzine-1-ethane-sulfonic acid) at 8.0 pH, 5 mM MgCl2, 2 mM cysteine 

hydrochloride, and 2% w/v PVP-40 (polyvinyl-pyrrolidone, MW ≈ 40,000) (John and 

Greenway 1976). The mixture was homogenized with mortar and pestle, and centrifuged 

at 10,000 x g for 10 minutes at room temperature. Samples were kept at 4ºC prior to 

centrifuging.   

The supernatant was assayed spectrophotometrically at room temperature. The 

enzyme was assayed using 80 µM NADH and 10 mM acetaldehyde in 950 µL of a buffer 

solution of 40 mM bicine and 5 mM MgCl2 (John and Greenway 1976). Activity of the 

enzyme was determined by oxidation rates of NADH, measured at 340 nm. The rate of 

oxidation in the presence of acetaldehyde was corrected for background rates of oxidation 

and converted to µmol per min per g fresh root weight.  
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Statistical analysis 

 All statistical analysis was performed using SPSS v.12 (SPSS Inc., Chicago, IL).  

Photosynthesis data, including Pmax, JO2, and both qe, and fluorescence data were 

analyzed using repeated measures analysis of variance (ANOVA) for intra- and inter-

specific comparisons. A Greenhouse-Geisser correction was applied to correct for lack of 

sphericity. Analyses of A, gs, and Ci were performed using the values at PPFD of 1500 

μmol m-2 s-1. Differences in δ13C and ADH activities due to species and treatment 

variation were analyzed with two-way ANOVA. ADH data were transformed using a 

square root transformation to make the data normally distributed.   
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RESULTS 

Gas exchange comparisons within species  

For native Spartina, mean photosynthetic rate (A) at a PPFD of 1500 μmol m-2  s-1 

ranged from 11.6 μmol CO2 m-2 s-1 in low flooding to 19.3 μmol CO2 m-2 s-1 in deep 

flooding conditions (Figure 1a-b).  A was not significantly different over time 

(F1,3=3.443, p=0.076). There was a significant treatment x time interaction for A in 

Spartina (F1,3=3.155, p=0.044). Mean stomatal conductance (gs) ranged from 0.104 to 

0.140 mol m-2 s-1 across treatments and sampling dates (Figure 1c -d).  There was a 

significant interaction of treatments x time in gs (F1,3=3.416, p=0.034). Mean internal 

substomatal CO2 concentration (Ci) ranged from 124 ppm in deep flooding to 208 ppm in 

dry conditions (Figure 1e-f).  There was no significant interaction in Ci of  treatment and 

time (F1,3=1.630, p=0.210). 

 There was no significant interaction of time and treatment (F1,3=0.189, p=0.903) 

in A between 7 day and 28 day measurements in Phragmites (Figures 2a and 2b). Mean A 

in Phragmites ranged from 6.2 to 18.0 μmol CO2 m-2 s-1 at a PPFD of 1500 μmol m-2 s-1 

across treatments and times.  Mean gs was also not significantly different in the 

interaction of treatment x time (F1,3=0.419, p=0.741) for Phragmites (Figures 2c and 2d).  

Mean Ci ranged from 219 to 246 ppm (Figure 2e and 2f). There was no significant 

difference in Ci in time or treatments in Phragmites (F1,3=0.333, p=0.801).  

 All the Phalaris in dry treatments were dying and had too little leaf area to 

perform photosynthetic measures at 7 and 28 days. At 7 days, mean A ranged from 9.9 to 
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12.5 μmol CO2 m-2 s-1 (Figure 3a). After 28 days, three deep flooded Phalaris had died.  

A in Phalaris was significantly different between 7 and 28 days (F1,3= 5.949, p=0.029). A 

ranged from 9.2 to 18.7 μmol CO2 m-2 s-1 at 28 days. There was not a significant 

interaction in time and treatment (F1,3=0.171, p=0.844) (Figure 3b). Mean gs of Phalaris 

at 7 days ranged from 0.12 to 0.24 mol m-2 s-1.  There was no significant differences in gs 

due to time (F1,3=2.547, p=0.133) or the interaction of time and treatment (F1,3=0.212, 

p=0.812) in Phalaris  (Figures 3c and 3d). Ci of Phalaris ranged from 222 to 259 ppm 

across treatments and times (Figure 3e-f). Ci decreased over time (F1,3=6.080, p=0.027) 

but there was no interaction in time and treatment (F1,3=0.423, p=0.663) (Figure 3e and 

3f).  

 In Sorghum, mean A ranged from 10.1 to 14.5 μmol CO2 m-2 s-1 at 7 days (Figure 

4a).  By 28 days, all the deep flooded plants had died and three of the medium flooded 

plants had died. Seven of the low flooded plants and three of the medium flooded plants 

flowered between 7 days and 28 days. There was a significant decrease in A over time 

(F1,2=24.541, p<0.001), but there was no difference among treatments (F1,2=0.613, 

p=0.553).  In surviving Sorghum, mean A ranged from 6.5 to 7.1 μmol CO2 m-2 s-1 

(Figure 4b).  gs of Sorghum was similar to A in that gs became lower over time 

(F1,2=19.637, p<0.001), but was not different among treatments (F1,2=0.045, p=0.956) 

(Figure 4c and 4d). At 7 days, mean gs ranged from 0.077 to 0.097 mol m-2 s-1 and from 

0.005 to 0.055 mol m-2 s-1 at 28 days. Mean Ci at 7 days ranged from 94 to 132 ppm and 

140 to 174 ppm at 28 days. Ci in Sorghum became higher over time (F1,2=9.492, 

p=0.007), but was not different among treatments (F1,2=2.106, p=0.154) (Figure 4e and 

4f).  
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Comparisons among treatments and species 

 A was significantly different among species and treatments at a PPFD of 1500 

μmol m-2 s-1, and there was a significant interaction of time and species (F1,3=5.648, 

p=0.001). Using a Tukey‟s HSD post-hoc test, A in Spartina was greater than Phragmites 

and Phalaris, which were significantly greater than A in Sorghum (ANOVA, p≤0.004).  

Repeated measures ANOVA did not detect significant differences in A over time 

(F1,3=0.943, p=0.334,observed power=0.16), nor in the interaction of time and treatment 

(F1,3=0.743, p=.530,observed power=0.20).  

There was a significant time x species interaction in gs at a PPFD of 1500 μmol 

m-2 s-1 (F1,3=2.752, p=0.048). A Tukey‟s HSD post-hoc test of gs indicated Phragmites 

and Phalaris were significantly greater than Spartina, which in turn was greater than 

Sorghum (ANOVA, p≤0.002). There were no significant differences in gs over time 

(F1.3=0.046, p=0.830, observed power=0.06), nor in the interaction of time and treatment 

(F1,3=0.701, p=0.554, observed power=0.19) when measured across species. There was a 

significant time x species interaction in Ci at a PPFD of 1500 μmol m-2 s-1 (F1,3=4.891, 

p=0.004). A Tukey‟s HSD post-hoc test indicated Ci was highest in Phalaris and 

Phragmites, which were significantly greater than Spartina, which was in turn 

significantly greater than Sorghum (ANOVA, p ≤ 0.049). The repeated measures 

ANOVA did not detect significant differences over time (F1,3=0.453, p=0.503, observed 

power=0.10), nor in the interaction of time and treatment in Ci (F1,3=0.879, p=0.456, 

observed power=0.23).  
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Fv/Fm measurements ranged from 0.426 to 0.802 across species and treatments 

(Figure 5). Fv/Fm measurements for all species and treatments were significantly different 

over time (F1,3=20.183, p<0.001), and there were significant interactions of time and 

treatments (F1,3=4.486, p=0.005), time and species (p<0.001), and time, treatment, and 

species (p=0.003) (Figure 5). Changes in Fv/Fm indicate there was damage to PSII in 

some species as flooding persisted in certain treatments. Tukey‟s HSD indicated Fv/Fm 

was highest in Phragmites, followed by Phalaris and Spartina, which were significantly 

greater than Sorghum (Figure 5; ANOVA, p<0.001). Mean Fv/Fm of plants in medium 

flooding was the highest, followed by low flooding and deep flooding, which were 

significantly higher than dry treatments (Figure 5; ANOVA≤0.019).  

  Pmax data were transformed by using a square root transformation to normalize 

distribution.  There was a significant time x species interaction (F1,3=3.219, p=0.027) for 

Pmax (Figure 6). There was no significant effect of time (F1,3=0.178, p=0.674, observed 

power=0.07), and the interaction of time and treatment was not significant (F1,3=0.945, 

p=0.423, observed power=0.25).  Tukey‟s HSD showed a significant difference in square 

root transformed means with Spartina being highest, followed by Phalaris and 

Phragmites, which were in turn higher than Sorghum.       

JO2 (gross rates of O2 evolution) data at a PPFD of 1500 μmol m-2 s-1 were 

transformed by using a square root transformation.  The repeated measures ANOVA 

showed no significant difference over time (F1,3=3.476, p=0.066), nor in the interaction 

of time and species (F1,3=1.787, p=0.156), or the interaction of time and treatment 

(F1,3=1.602, p=0.195) (Figure 7).  
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Net qe data were transformed using a log transformation for normality.  There 

was no effect of time (F1,3=0.720, p=0.399, observed power=0.13), and the interactions of 

time x species (F1,3=1.070, p=0.367, observed power=0.37), and the interaction of time x 

treatment (F1,3=0.608, p=0.612, observed power=0.17) were not significant (Figure 8). 

Gross qe data were transformed using a square root transformation to normally distribute 

the data.  The effect of time (F1,3=6.256, p=0.014) was significantly different, and there 

was a significant interaction of time and species (F1,3=5.958, p=0.001).  Gross qe was 

highest in Phragmites, which was significantly greater than Phalaris and Spartina, which 

was in turn significantly greater than Sorghum (ANOVA, p≤0.008) (Figure 9).  

A two-way ANOVA was used to analyze leaf carbon isotope ratios (δ13C). There 

was a significant difference in δ13C among treatments (F3=9.632, p<0.001). Mean δ13C 

across species was highest in deep flooding, which was significantly higher than medium 

flooding and low flooding, which were in turn significantly higher than dry flooding  

(Tukey‟s HSD, p<0.001).  There were significant differences between C3 and C4 species. 

δ13C ranged from -25.0 to -29.2‰ in C3 species Phragmites and Phalaris and from -12.2 

to -13.5‰ in C4 species Spartina and Sorghum (Figure 10).  There were significant 

differences in the two-way ANOVA among species (F3=1120.208, p<0.001).  Mean δ13C 

of Sorghum and Spartina were significantly higher than means of Phragmites and 

Phalaris (p<0.001).  

 Data for root ADH activities were transformed by using a square root 

transformation so the data were normally distributed for a two-way ANOVA.  There was 

a significant difference among species (F3=11.683, p<0.001) and a significant interaction 
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of species and treatment (F9=2.144, p=0.032) (Figure 11).  Root ADH activity ranged 

from -0.047 to 1.799 µmol gfw-1 min-1. Root ADH activity was highest in Spartina, 

which was significantly greater than Phalaris, Phragmites, and Sorghum (ANOVA, 

p<0.001). 
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DISCUSSION 

Gas Exchange Measurements 

 A, gs, and Ci are closely related.  A is the rate of CO2 fixation in the leaf. gs is a 

measure of  stomatal density and the extent to which individual stomata are open 

(Kozlowski 1997).  More stomata open correlates with higher gs, and more CO2 is able to 

enter the leaf (Lawson et al. 2008).  Therefore, increases in gs correlate with a higher A 

due to a higher availability of CO2 in the leaf for fixation (Mojzes and Kalapos 2008).  Ci 

is the intercellular (substomatal) concentration of CO2 in the leaf. Ci is influenced by the 

ease that CO2 can enter the leaf (gs) as well as the rate CO2 is used in chloroplasts (A) 

(Farquhar and Sharkey 1982).   Higher A correlates with lower Ci, but lower gs often 

correlates with lower Ci. As CO2 is used for photosynthesis, concentration of CO2 within 

the leaf decreases (Farquhar and Sharkey 1982). Therefore, changes in Ci can be used to 

link the relationship between A and gs (Stuart et al. 1985). Since gs and A are both 

influenced by flooding, changes in A, gs, and Ci are a good indication of how well a 

species can tolerate flooding.  Individual species can be compared to test if flooding 

tolerance is a mechanism for invasion.  

Mean A of Spartina decreased in dry, low, and medium treatments between 7 and 

28 days.  However, A increased in deep flooding between 7 and 28 days (Figures 1a and 

1b). Increase in A among treatments suggests Spartina performed better with increased 

flooding.  Values of gs in Spartina were similar to the results of Maricle et al. (2007) in 

many Spartina species, including Spartina pectinata. In the present study, gs decreased in 

all treatments from 7 to 28 days while Ci increased over time and began to vary more 
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among treatments (Figures 1e and 1f).  The decrease in gs with an increase in A further 

supports that Spartina performed best in deeper flooded conditions. Since gs decreased, 

but A increased, this indicates Spartina used CO2 more efficiently as flooding increased.   

Spartina opened fewer stomata as flooding increased.  This indicated that Spartina had an 

increased carboxylation capacity which allowed Spartina to not limited by CO2.  

  A and gs were highest at 7 days in the dry treatment. Spartina is considered 

an indicator of a wetland based on its facultative wetland indicator status (U.S. Fish and 

Wildlife Service 1988). This means that if Spartina occurs in a field setting the field has a  

67-99% likelihood of being a wetland.  As such, Spartina was expected to increase A and 

gs as flooding increased. High A in dry treatments at 28 day measurements could indicate 

that the effects of flooding take more than 7 days to manifest in Spartina. Flooding 

increased photosynthetic measures like A and gs between 7 and 28 days.  Flooding might 

take more than 7 days to benefit Spartina. 

A of invasive Phragmites did not change between 7 and 28 days (Figures 2a and 

2b).  Phragmites had equally high A and gs in all flooding treatments.  Significantly lower 

photosynthesis rates in dry treatments compared to any of the flooded treatments support 

the idea that Phragmites performs optimally in flooded conditions.   

Variability in Ci decreased in Phragmites as the flooding continued.  However, gs 

varied more among treatments at 28 days.   The similar level of Ci in all treatments at 28 

days indicated stomatal closure was not limiting for photosynthesis in any treatment.  

Deep flooding had the highest gs as well as the highest A at 28 days.  Increased gs allowed 
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for higher turnover of CO2, which led to a higher A without changing the Ci within the 

leaf. 

Phalaris is regarded as a drought tolerant species (Kim et al. 2005). However, all 

dry Phalaris were too unhealthy for gas exchange measurements or had died by 7 days in 

the present study.  Comparisons within the flooded Phalaris plants show a strong 

preference for low or medium flooded conditions (Figures 3a – 3f).  Although at 7 days 

there was little difference in A or gs in any treatment, at 28 days A and gs were 

significantly higher in low and medium flooding compared to deep flooding. These 

results agree with those of Coops et al. (1996) and Jenkins et al. (2008) that Phalaris 

performs strongly in saturated soils, but if the plant is submerged, the performance 

drastically decreases and can lead to death.  Similarly, death can result from growth in 

soil conditions that are too dry. 

There were significant decreases of A and gs in Sorghum over time (Figure 4).  gs 

in Sorghum was similar to the ranges of Sorghum halepense in field conditions reported 

by Stuart et al. (1985), but A was lower in this study than values reported by Stuart et al. 

(1985). Ranges of gs and A were similar to those reported for Sorghum halepense in 

greenhouse conditions by Mojzes and Kalapos (2008).  In the present study, there was a 

significant increase in Ci in Sorghum over time. Increase in Ci was related to the decrease 

in A and gs.  Ci increased because lowering A led to less CO2 being fixed. Stomatal 

closure then resulted from the increase in Ci. At 7 days, the treatment with the highest A 

was medium flooding, where A averaged 14.5 µmol CO2 m-2 s-1.  At 28 days, the 

maximum A of medium flooding averaged 6.5 µmol CO2 m-2 s-1.  The significant 
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decrease in A of Sorghum indicates Sorghum from the sampled population is not adapted 

to survive in deeply-flooded environments. 

Inter-specific comparisons were performed by comparing A, gs, and Ci at a PPFD 

of 1500 µmol m-2 s-1.  Ranges of A and gs in all species were similar to measurements by 

Pagter et al. (2005) for Phragmites australis in field settings. By contrast, ranges for Ci 

were lower in Pagter et al. (2005) compared to those measured in this study.  A across 

treatments was significantly higher in native Spartina compared to invasive Phragmites 

and Phalaris.  However, when comparing treatments and species, Spartina had the 

highest A and gs in deep flooded treatments, but both Phragmites and Phalaris had higher 

A and gs in medium and low flooded treatments (Figures 1-3).  

Increased A was correlated with an increase in gs across species in all treatments.  

Decreases in gs can lead to a decrease in A because there is less CO2 available for 

photosynthesis when stomata are closed (Farquhar and Sharkey 1982). Increases in Ci 

also can lead to decreased gs at leaf level (Lawson et al. 2008). In the present study, gs 

was expected to be different among the native and invasive grasses. Both Phragmites and 

Phalaris are C3 photosynthetic plants.  Their similar gs could possibly be attributed to this 

(Scheidegger et al. 2000). C4 plants have lower gs compared with C3 plants, as C4 plants 

concentrate CO2 within bundle sheath cells (Mojzes and Kalapos 2008). As a result, C4 

plants are able to saturate photosynthesis with ambient (or lower) levels of CO2 (Taiz and 

Zeiger 2006).  Thus, lower gs in Spartina and Sorghum are due to their photosynthetic 

pathway.   
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Significant differences in A, gs, Ci, and the interaction of time and species can be 

used along with differences in Pmax, JO2, and net and gross qe to determine which species 

was best adapted physiologically for flooding.  Pmax is the maximum photosynthetic rate 

measured in the light response curve.  Comparing Pmax among species shows the 

maximum performance each is reaching in different treatments.  Pmax of Spartina, 

Phragmites, and Phalaris was higher than Pmax reported by Krauss et al. (2006) in 

greenhouse studies of neotropical mangroves.  While Pmax was significantly different over 

time among species, there were no significant differences in JO2 among species (Figure 

7). JO2 is the rate of oxygen evolution from photosystem II (PSII), as calculated from 

fluorescence measurements (Crofts and Horton 1991).    Differences in maximum JO2 

among treatments would indicate damage to PSII.  Due to significant differences in Pmax 

among species over time, but not maximum JO2, the results suggest limitations to any 

photosynthetic process are occurring in CO2 fixation, and not PSII.  

 Net qe is a measurement of the efficiency of carboxylation (Genty et al. 1989). 

Decreases in net qe among treatments and species can show how well adapted a species 

is to flooding. Limitation in CO2 fixation due to stress of flooding in the C4 species 

Spartina and Sorghum could be evident in the net qe. For example, leakage of CO2 from 

bundle sheath cells in C4 plants is detectable by decreases in net qe, since extra light 

energy is needed to recycle leaked CO2 (Farquhar 1983). Because the net qe was not 

significantly different among treatments or species over time, there were no increases in 

bundle sheath leakage as a result of flooding.   
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 Increases in gross qe indicate  an increase in efficiency of O2 production (Crofts 

and Horton 1991).  Much like JO2, a low gross qe indicates decreased efficiency of PSII. 

Differences in gross qe among treatments can be used to explain how well adapted each 

species is to flooding.  Gross qe of Spartina and Phragmites increased over time in 

flooding treatments (Figure 7). With increased photosynthetic rates, Spartina and 

Phragmites are best adapted photosynthetically for flooded conditions compared to the 

other species in this study.  Gross qe decreased over time in all flooding treatments in 

Phalaris. This could be an indication that longer flooding is detrimental to PSII in 

Phalaris.   

There was no detected effect of time or the interaction of time x treatments in A, 

gs, Ci, Pmax, and net qe in inter-specific comparisons of all species. Although they were 

not significantly different, there was a low observed power in the analysis (observed 

power ≤0.23). This means these results could only explain 23% or less of the variation in 

values.  Because of this, it cannot be definitively stated that the different flooding 

treatments had no effect on parameters like A, gs, Ci, Pmax, and net qe. In the future, an 

increased sample size could overcome the issues with observed power in those 

measurements. 

Fluorescence measurements 

Photon energy absorbed by PSII can have three possible fates.  First, the absorbed 

light energy can be used in photochemistry. If the light energy is not used for 

photochemistry, it can be released as heat or lost as chlorophyll fluorescence.  

Chlorophyll fluorescence is absorbed light energy re-released by the plant as light (Baker 
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2008). The three energy dissipation processes occur in competition with one another 

(Maxwell and Johnson 2000). If one process decreases, it can be assumed the other two 

processes have increased. Measuring the maximum quantum yield of PSII (Fv/Fm) will 

indicate the efficiency at which PSII is operating. Dark adapted Fv/Fm is maximized at 

0.83 in most plants (Björkman and Demmig 1987, Baker 2008).  Decreases in Fv/Fm 

indicate damage to PSII caused by abiotic or biotic stress (Baker 2008).  Moreover, 

measurements of fluorescence can be used to estimate A in C4 plants (Edwards and Baker 

1993).  

In the present study, Fv/Fm measurements were mostly in the range of 0.75-0.83, 

similar to results reported by Mauchamp and Méthy (2004) for flooded Phragmites and 

Phalaris.  There was little variation in Fv/Fm over time and treatments in Phragmites and 

Spartina (Figure 5).  This indicates there was no damage to PSII from flooding in those 

species.  The increase in A and gs, and the decrease in Ci in Phragmites and Spartina, 

coupled with high Fv/Fm measures, suggests photosynthetic abilities increased as flooding 

increased. This was further supported by the lack of significant change in JO2 over time or 

among species.  JO2 and Fv/Fm are closely linked to CO2 fixation in maize leaves 

(Edwards and Baker 1993).  Due to the lack of significant change in JO2 and Fv/Fm, the 

benefits of flooding to Phragmites and Spartina were not due to changes in PSII. 

 Fv/Fm values for Phalaris increased over time in low and medium flooding, but 

decreased in deep flooding.  Decrease in deep flooding Fv/Fm, along with increased 

mortality and decreased A, suggests Phalaris has decreased photosynthetic capabilities 

when flooded above the soil surface.  This is particularly true for extended flooding. 
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Decreased Fv/Fm in Phalaris could be a result of damage to PSII.  Fv/Fm decreased in all 

treatments in Sorghum between 7 days and 28 days (Figure 5). Differences among 

treatments and species support that Sorghum is not adapted to short-term flooding 

compared to the other species included in this study. 

Stable Isotope Analysis 

There are two stable isotopes of carbon: „light‟ carbon-12 (98.9% abundance) and 

„heavy‟ carbon-13 (1.1% abundance) (O‟Leary 1988).  Much information can be learned 

from the ratio of heavy to light carbon in organisms, and how this differs between 

product and substrate of a biochemical reaction or physical processes.  In most 

biochemical reactions (including the carbon reactions of photosynthesis), the light isotope 

of an element reacts more quickly than the heavier isotope (Choi et al. 2005).  The 

difference in isotope values between substrate and product is termed discrimination.  

There is a difference in carbon isotope discrimination between C3 and C4 plants 

(Farquhar et al. 1989). C3 photosynthetic plants favor light carbon because of a strong 

fractionation by the initial carbon fixation enzyme, ribulose-1,5, bisphosphate 

carboxylase/oxygenase (Rubisco) (Ehleringer and Osmond 1991).  In contrast, the initial 

carbon fixation enzyme in C4 plants, Phosphoenolpyruvate carboxylase (PEPCase), does 

not favor the light carbon, causing C4 plants to be heavier (higher leaf carbon isotope 

ratios (δ13C)) (Brooks et al. 2002, O‟Leary 1988).  C3 plants are therefore „lighter‟ (lower 

δ13C) than C4 plants, giving a measurable difference between the two types of 

photosynthetic plants (O‟Leary et al. 1992).  Changes in carbon fractionation are also 

more sensitive to changing environmental conditions in C3 plants compared to C4 plants, 
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so effects of flooding would be expected to be much greater for C3 plants (Hanba et al. 

2010).  Greater environmental stress in a C3 plant is usually accompanied by closure of 

stomata, which results in an increase in δ13C (O‟Leary et al. 1992).  The opposite is true 

of C4 plants, which often become lighter with stomatal closure due to environmental 

stress (e.g., Maricle and Lee 2006).   

Leaf δ13C of the C3 species, Phalaris and Phragmites ranged from -26.6 to -

29.0‰, which is  lower than shoot values of Phragmites reported by Choi et al. (2005) 

but similar to δ13C values in Festuca rubra, Potentilla aurea, and Achillea millefolium as 

reported by Scheidegger et al. (2000).  As flooding levels increased, δ13C in Phragmites 

became lower (Figure 10).  This indicates Phragmites increased stomatal conductance as 

flooding levels increased.  This agrees with the changes in gs in photosynthetic measures 

of Phragmites.  The opposite occurred in Phalaris. As flooding increased in Phalaris, 

δ13C increased.  Phalaris had increased mortality and decreased photosynthetic 

performance as flooding increased.  The clear correlation between decreased 

photosynthetic performance and higher δ13C indicates stable isotope data could be used to 

assess flooding tolerance in other C3 species. 

Leaf δ13C in the C4 species, Sorghum and Spartina ranged from -12.2 to -13.5‰.  

This is similar to the results of Maricle and Lee (2006) in Spartina grasses.  Differences 

in δ13C in C4 species could result from changes in Ci/Ca or leakage of CO2 from bundle 

sheath cells (Farquar 1983). A difference in net qe would indicate an increase in bundle 

sheath leakage in C4 species (Farquar 1983). The lack of difference in net qe, coupled 

with no significant difference in δ13C, means there was no increase in bundle sheath 
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leakage in C4 species. Ci/Ca ranged from 0.32 to 0.54 in Spartina and 0.36 to 0.45 in 

Sorghum.  The lack of differences in δ13C in C4 species are explained by no changes in 

Ci/Ca.  This is consistent with the lack of difference in net qe and δ13C between 

treatments in Sorghum and Spartina. 

ADH activity 

Alcohol dehydrogenase (ADH) is needed for glycolysis to continue in cells under 

anoxic and hypoxic soil conditions. Fermentation replenishes NAD+ for glycolysis. ADH 

is the enzyme that catalyzes the reduction of acetaldehyde to ethanol, and NADH is 

oxidized to NAD+ in the process (Crawford 1967).  In the present study, root ADH 

activity ranged from -0.05 to 1.80 µmol gfw-1min-1 in all species and treatments.  The 

range of ADH is similar to the ranges of ADH reported by McManmon and Crawford 

(1971) for Senecio aquatics, Caltha palustris, and Ranunculus flammula in lab conditions 

and by Maricle et al. (2006) for Spartina grasses in greenhouse conditions. It was 

hypothesized that ADH activity would increase as flooding levels increased.  This 

hypothesis was supported in Spartina and Phalaris (Figure 11).  Both species increased 

ADH activity to acclimate to saturated soils.  Increased ADH activity indicates oxygen 

deficiency.  In Sorghum, ADH activity only increased in low flooded plants.  Increased 

ADH activity was a response to flooding that could be correlated with an effort to 

prolong life while flowering. Low activities of ADH were measured in the other flooding 

treatments, because the below ground tissue was likely dead.  Dry Sorghum had low 

ADH because there was no oxygen deficiency, and therefore no reason for the individuals 

to produce ADH. 
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Phragmites had low activities of ADH in all treatments.  ADH activities 

decreased in many cases as flooding increased.  Phragmites can survive without oxygen 

in soil for more than 28 days (Crawford and Braendle 1996). This is because Phragmites 

can use internal gas transport to move oxygen from leaves to roots (Armstrong et al. 

1992, Colmer and Flowers 2008).  As a result, there is no need for Phragmites to undergo 

fermentation when it can continue aerobic respiration. Because of different methods used 

to tolerate flooded soils in Phragmites and Spartina, it is difficult to say which is more 

tolerant of saturated soils.  Further research is needed on the two species in field 

conditions to see which tolerates soil saturation better. Differences in this study support 

the hypothesis that ADH activity would increase as flooding increases.  However, there 

did not seem to be an advantage as far as ADH activity in the invasive species versus the 

native species.  

Flooding tolerance and invasiveness 

Phragmites was the most flood tolerant of the invasive species. Phragmites is the 

best adapted to invaded frequently flooded areas.  Phragmites had the highest A, gs, and 

Pmax in flooded conditions.  Low root ADH activity because of abundant internal O2 

transport allows Phragmites to tolerate flooding longer than many other wetland species 

(Crawford and Braendle 1996).  Correlations between decreasing δ13C and gs suggested 

Phragmites kept its stomata open more when flooded compared to dry conditions.  This 

indicates that Phragmites is very well adapted for flooding.  Possibly Phragmites could 

use its physiological advantages in flooded conditions as a mechanism to invade.  At the 



29 

 

least, the ability of Phragmites to withstand flooding could allow it to outlive native 

species in the flooded area and Phragmites could spread farther when the water recedes.  

Photosynthetic abilities of native Spartina were comparable with Phragmites.  

Spartina had the highest A and gs in deep flooding as well as increased ADH activity to 

tolerate saturated soils.  However, A and gs of Spartina were lower than Phragmites in 

low and medium flooding.  Spartina is physiologically adapted to compete with 

Phragmites in deep flooded conditions, but as water levels decrease Spartina could be 

more susceptible to invasion by Phragmites and other wetland invaders.  Field studies 

would be needed in the future to verify these greenhouse results and to assess the 

invasibility of Spartina by Phragmites in wetland environments. 

Physiological processes of Phalaris are moderately flood tolerant.  Phalaris was 

the best adapted species in medium or low flooding, owing to high A and gs. Phalaris was 

not suited for deep flooding in which the plant was partially submerged, similar to Miller 

and Zedler (2003). This indicates that Phalaris could be the best adapted to invaded areas 

that are not constantly flooded.  δ13C became heavier as flooding increased.  Phalaris 

closed its stomata as flooding increased, which decreased its overall photosynthetic 

performance.  Fv/Fm of Phalaris decreased in deep flooding over time, whereas Fv/Fm 

values in low and medium flooding were not changed over time.  Decreases in Fv/Fm in 

deep flooding indicate damage to PSII, which provides more evidence that Phalaris was 

moderately tolerant to flooding.  

In this study, Sorghum was the most sensitive species to flooding.  Ability to 

tolerate flooding is not part of the invasive capabilities of this species.  Many Sorghum 
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samples died in flooded conditions. Additionally, Fv/Fm in flooded Sorghum decreased 

over time.  This could be correlated with Sorghum individuals that flowered.  Energy and 

nutrients were reallocated to flowering and taken away from photosynthetic upkeep.  

There were also significant decreases in all photosynthetic process due to flooding in 

Sorghum.  The population of Sorghum used in this study was not flooding tolerant since 

all deep flooded plants as well as a number of medium flooded plants died before 28 

days. Phragmites and Phalaris performed better than native Spartina in some flooding 

treatments as hypothesized.  Poor performance by Sorghum in flooded conditions causes 

a rejection of the hypothesis that this invasive species would perform better under 

flooded conditions compared to the native species.   
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Figure 1. Light response curve (A and B), stomatal conductance (C and D), and internal 
CO2 concentration (E and F) in Spartina pectinata.  Panels A, C, and E are 7 day 
measurements. Panels B, D, and F are 28 day measurements. The black circle is dry 
conditions, the white circle is low flooded conditions, the black triangle is medium 
flooded conditions and the white triangle is deep flooded conditions. The points are the 
means of 6-8 individuals ± SE. 
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Figure 2. Light response curve (A and B), stomatal conductance (C and D), and internal 
CO2 concentration (E and F) in Phragmites australis.  Panels A, C, and E are 7 day 
measurements. Panels B, D, and F are 28 day measurements. The black circle is dry 
conditions, the white circle is low flooded conditions, the black triangle is medium 
flooded conditions and the white triangle is deep flooded conditions. Points are the means 
of 6-8 individuals ± SE. 
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Figure 3. Light response curve (A and B), stomatal conductance (C and D), and internal 
CO2 concentration (E and F) in Phalaris arundinacea.  Panels A, C, and E are 7 day 
measurements. Panels B, D, and F are 28 day measurements. Panels A, C, and E are 7 day 
measurements. Panels B, D, and F are 28 day measurements. The black circle is dry 
conditions, the white circle is low flooded conditions, the black triangle is medium 
flooded conditions and the white triangle is deep flooded conditions. Points are the means 
of 6-8 individuals ± SE. 
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Figure 4. Light response curve (A and B), stomatal conductance (C and D), and internal 
CO2 concentration (E and F) in Sorghum halepense.  Panels A, C, and E are 7 day 
measurements. Panels B, D, and F are 28 day measurements. Panels A, C, and E are 7 day 
measurements. Panels B, D, and F are 28 day measurements. The black circle is dry 
conditions, the white circle is low flooded conditions, the black triangle is medium 
flooded conditions and the white triangle is deep flooded conditions. Points are the means 
of 6-8 individuals ± SE. 
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Figure 5: Maximum quantum efficiency of PSII (Fv/Fm) for plants at 7 days (A) and at 28 
days (B) for all treatments. Bars are means of 6-8 individuals ± SE, except for deep 
flooded Phalaris which was 5 individuals and deep flooded Sorghum was 3 individuals. 
Four species are represented. The black bars are dry conditions, the light gray bars are 
low flooded conditions, the dark gray bars are medium flooded conditions, and the 
lightest bars are deep flooded conditions.  
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Figure 6. Maximum measured photosynthetic rate (Pmax) at 7 days (A) and at 28 days (B). 
Bars are means of 5-8 individuals ± SE. The species and treatments are labeled as in 
Figure 5. There are no dry Phalaris samples because all samples were dead or too 
unhealthy at 7 days.  All deep Sorghum died between 7 and 28 days. 
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Figure 7. Rate of O2 evolution from PSII (J02), measured at 7 days (A) and measured at 
28 days (B). Bars are means of 5-8 individuals ± SE. Species and treatments are labeled 
as in Figure 5. 
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Figure 8. Net qe during photosynthesis measured at 7 days (A) and measured at 28 days 
(B). Bars are means of 5-8 individuals ± SE. Species and treatments are labeled as in 
Figure 5. 
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Figure 9: Gross qe of photosynthesis measured at 7 days (A) and measured at 28 days (B). 
Bars are means of 5-8 individuals ± SE. Species and treatments are labeled as in Figure 5. 
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Figure 10: Leaf carbon isotope values (δ13C) among treatments and species. Bars are 
means of 6-8 individuals ± SE. Species and treatments are labeled as in Figure 5. 
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Figure 11: Root alcohol dehydrogenase (ADH) activity among treatments and species. 
Bars are means of 6-8 individuals ± SE. Species and treatments are labeled as in Figure 5. 
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CHAPTER 2: EFFECTS OF FLOODING ON TRANSPIRATION IN JOHNSONGRASS 

(SORGHUM HALEPENSE) AND COMMON REED (PHRAGMITES AUSTRALIS)  

 

ABSTRACT 

Adaptation to flooding can indicate the ability of a species to invade wetlands. 

Numerous adaptations exist, but effects of flooding on stomatal conductance are 

especially notable. Measurements of stomatal conductance and transpiration can provide 

information on plant carbon gain and water loss. In this study, flooding-sensitive 

Sorghum halepense and flooding-tolerant Phragmites australis (n=5) were flooded to 8 

cm depth or kept dry for 7 days.  Transpiration, stomatal conductance, boundary layer 

conductance, and vapor conductance were measured for each. Transpiration was 

significantly higher in drained treatments compared to flooded for Sorghum. However, 

transpiration was significantly higher in flooded treatments compared to drained for 

Phragmites. Boundary layer conductances were not significantly different between 

species or treatments. Phragmites had increased stomatal conductance when flooded, 

which indicates a high physiological tolerance to waterlogged soils. This allows 

Phragmites to photosynthesize under waterlogged conditions and to be successful as a 

wetland invader. By contrast, stomatal conductance in Sorghum was decreased under 

flooding, indicating a greater sensitivity to flooding. The sampled population of Sorghum 

is therefore not a threat to invade chronically flooded soils based on these results. Further 

information on the conditions that maximize stomatal opening for Phragmites can help 

management efforts. 
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Nomenclature: Phragmites australis (Cav.) Trin. ex Steud.; Common Reed, Sorghum 

halepense (L.) Pers.; Johnsongrass 
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INTRODUCTION 

  Invasion by exotic plants is especially prevalent in wetlands, because wetlands 

are landscape sinks and are prone to disturbance (Zedler and Kercher 2004). Both 

common reed (Phragmites australis (Cav.) Trin. ex Steud.) and johnsongrass (Sorghum 

halepense (L.) Pers.) are highly invasive plants (Gries et al. 1990, Taylor and Smith 

2005). Common reed is a frequent invader in wetland settings whereas johnsongrass 

more frequently inhabits upland areas (e.g., according to the wetland indicator status of 

each; U.S. Fish and Wildlife Service 1988). Many plants cannot survive in regularly-

flooded soils (Armstrong et al. 1994), which becomes important when considering 

invasiveness of plants in wetlands. To understand plant growth and potential invasions in 

wetlands, one must consider O2 availability. 

 Flooding is the most prominent stress on wetland plants (Mitsch and Gosselink 

2007). This stress comes from a displacement of oxygen from soil spaces, and the limited 

solubility of oxygen in a dissolved state. These conditions quickly lead to anoxia 

(Armstrong et al. 1994).  Species that are better able to tolerate anoxia will have a clear 

advantage as invaders in a waterlogged environment. 

Flooding-induced anoxia at the roots can influence stomata in leaves. Stomatal 

conductance is a measure of stomatal density, and the extent to which individual stomata 

are open. Stomatal conductance influences the rate that water vapor escapes from the 

plant, as well as the rate CO2 can enter the leaf for photosynthesis. The lack of O2 

obtained through the roots causes the plant to close stomata (Keddy 2000), producing a 

response similar to drought stress. For example, Glaz et al. (2004) showed a decrease of 
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photosynthesis and stomatal conductance in flooded sugarcane. Such measures are useful 

when working with stressed plants, as it describes basic leaf physiology and general 

responses to the environment.   

Physiological tolerance to flooding can become relevant ecologically. For 

example, common reed can move oxygen internally from leaves to roots (Colmer 2003, 

Colmer and Flowers 2008).  This allows the plant to keep stomata open. Indeed, common 

reed has been suggested to use flooding as a mechanism for invasion (e.g., Fraser and 

Karnezis 2005, Gries et al. 1990). By contrast, physiological responses of johnsongrass to 

flooding have not been studied previously. Knowledge on how johnsongrass and 

common reed respond to different environmental conditions can be used in future 

restoration and management plans in waterlogged soils.  

In the present study, common reed and johnsongrass were subjected to flooding in 

greenhouse treatments. Leaf-level physiological responses were measured to determine 

stomatal activity during flooding. It was hypothesized that the high flooding tolerance of 

common reed would manifest itself as an increase in transpiration, stomatal conductance, 

and vapor conductance under flooding. By contrast, the higher sensitivity of johnsongrass 

to flooding would be measureable as a decrease in transpiration, stomatal conductance, 

and vapor conductance under flooding.  
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METHODS AND MATERIALS 

Data Collection 

Ten individuals each of common reed and johnsongrass were selected randomly 

from plants of similar age and height.  Each individual was planted with potting soil in a 

pot that measured 11 cm x 11 cm x 10 cm. Five individuals of each species were placed 

in a tub measuring 50 cm x 36 cm and flooded to a depth of 8 cm, enough to submerge 

the soil completely. The other five individuals of each species were kept in dry 

conditions; these plants were watered once per week, and excess water was allowed to 

drain from pots. After seven days, data were collected using the youngest, fully-expanded 

leaf on each plant. Measured leaves appeared healthy on all plants. All data were 

collected during midday hours on 12 November 2009 in the Fort Hays State University 

greenhouse (Hays, KS). Conditions in the greenhouse included natural lighting with a 

mean PPFD of 202 μmol quanta m-2 s-1 during measurements, mean relative humidity 

was 0.50, and air temperature was 26 ºC. There was an average of 10 hours of daylight 

during the 7 days of treatment. Wind speed (u) (m s-1) was measured with an AM-4204 

hot wire anemometer (Lutron Electronic Enterprise Co., Ltd.; Taipei, Taiwan). Dry bulb 

(Ta) and wet bulb (Tw) temperatures (ºC) in the greenhouse were measured using a digital 

psychrometer (Extech Instruments RH300; Waltham, MA, USA). Lastly, a SC-1 Leaf 

Porometer (Decagon Devices, Inc.; Pullman, WA, USA) was used to measure stomatal 

conductance (gvs) (mmol m-2 s-1) on abaxial surfaces of sample leaves. 
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Data analysis 

Vapor pressure (ea, kPa) in the greenhouse was calculated after Campbell and 

Norman (1998) as 

ea  =  es(Tw)  –  γ  x  pa(Ta  –  Tw)                           [1] 

where the vapor pressure (ea) is a function of the saturated vapor pressure (es, kPa) at the 

wet bulb temperature (Tw), γ is the psychrometer constant (6.66 x 10-4 ºC-1), and pa is 

atmospheric pressure (94.05 kPa at the study location). 

The dominant type of convection was determined according to Campbell and 

Norman (1998) as 

Gr/Re                                                                  [2] 

which is a ratio of the Grashof number (Gr) to the Reynold number (Re).  The Grashof 

number is calculated as: 

2

3





T
TgdGr                                                   [3] 

The Grashof number (Gr) uses the gravitational constant (g = 9.81 m s-2), the 

characteristic dimension of the leaf (d = 0.72 x leaf width, m), the temperature difference 

between leaf and air (δT), the Kelvin air temperature (T), and the kinematic viscosity of 

air ( ν = 1.55 x 10-5 m2 s-1 at 25ºC). The Reynold number is calculated as: 



ud
Re                                                       [4] 
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The Reynolds number is dependent on wind speed (u), characteristic dimension of 

the leaf (d = 0.72 x width of leaf), and the kinematic viscosity of air (ν = 1.55 x 10-5m2 s-

1).  Since the ratio Gr/Re2 was << 1.0, convection was determined to be forced (Campbell 

and Norman 1998). 

Water vapor conductance of the boundary layer (gva, mol m-2 s-1) around the leaf 

was determined after Campbell and Norman (1998). For forced convection, gva was 

calculated. The equation for forced convection is as follows: 

d
ug va 147.0

                                                   
 [5] 

where u is wind speed. Total conductance to water vapor (gv, mol m-2 s-1) for the leaf was 

found by the following equation: 

vsva gg
vg

11

1


                                                           [6] 

where gvs was determined with the porometer. Transpiration rate (E, mol m-2 s-1) was 

determined after Campbell and Norman (1998) as 

 

a

aLsv

p
eTegE 


)(                                                 [7] 

where es (TL) is saturated vapor pressure at leaf temperature, and pa is atmospheric 

pressure (94.05 kPa).   
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Statistical analysis was performed using SPSS v. 12 (2003, SPSS Inc. Chicago, 

IL). Two-way analysis of variances (ANOVA) were used to test for a difference among 

species and treatments (α=0.05). 
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RESULTS AND DISCUSSION 

Both johnsongrass (Sorghum halepense) and common reed (Phragmites australis) 

are introduced species that invade waterlogged areas (Gries et al. 1990, Taylor and Smith 

2005).  A species that is better able to tolerate flooded conditions has a clear advantage 

when invading a wetland area. One way to measure responses to physiological stress 

(including flooding) is to measure stomatal conductance of leaves. Leaf stomatal 

conductance is easy to measure with hand-held porometers, and gvs is fairly sensitive to 

environmental changes (e.g., Taiz and Zeiger 2006). Measuring gvs and E of both species 

in dry and flooded conditions can give information on carbon gain and growth potential. 

The results of this project could be used to explain how the species use physiological 

advantages while invading. This information can then be used in management and 

restoration efforts to control common reed and johnsongrass.  

Leaf stomatal conductance to water vapor (gvs) ranged from 11 to 84 mmol m-2 s-1 

across species and treatments (Figure 1b). Similar results were reported by Pagtar et al. 

(2005) for common reed (Phragmites australis) in native European populations. These 

results are somewhat lower than field measures of gvs for plants in wetland settings 

reported by Oue (2001) and Teal and Kanwisher (1970). Low light levels in the 

greenhouse in the present study most likely resulted in gvs and E values lower than one 

would expect under full sunlight. There was a significant interaction among species and 

treatment (p<0.001) in gvs, but there was no difference between species (p=0.158) or 

treatments (p=0.053). The significant interaction of species and treatment supports the 
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hypothesis that gvs would increase in flooded conditions for common reed, but decrease in 

flooded conditions for johnsongrass. 

Leaf boundary layer conductance to water vapor (gva) ranged from 447 to 1000 

mmol m-2 s-1 across species and treatments (Figure 1a). These figures are far greater than 

stomatal conductances (gvs; see below), indicating there was sufficient air flow in the 

greenhouse to allow adequate mixing, and gvs was the main influence on total leaf 

conductance (gv) and transpiration (E). There was no significant difference in gva between 

treatments (p=0.272), species (p=0.414), or their interaction (p= 0.627).  Equation 5 

demonstrates that gva is dependent on wind speed and the characteristic dimension of the 

leaf.  Wind speed in the greenhouse was due to fans in the environmental control system 

and remained constant.  Leaf width in common reed averaged 8.3 mm, whereas 

johnsongrass leaves averaged 11.8 mm (data not shown). The small difference in leaf 

width was not enough to influence gva.  

Total leaf conductance to water vapor (gv) ranged from 11 to 78 mmol m-2 s-1 

across species and treatments (Figure 1c). These numbers are similar to greenhouse 

measures of gv by Maricle et al. (2007) in salt marsh grasses. The analysis of  species 

(p=0.156) and of treatments (p=0.055) were not significant. A significant interaction of 

species and treatment (p<0.001) in gv also supports the hypothesis that gv would increase 

in flooded conditions for common reed, but decrease in flooded conditions for 

johnsongrass. 

Transpiration rates from leaves (E) ranged from 0.17 to 1.41 mmol m-2 s-1 across 

species and treatments (Figure 1d). These numbers are lower than field measures of E in 
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a salt marsh (Teal and Kanwisher 1970) or a prairie wetland (Jacobs et al. 2002). A lower 

value of E in greenhouse studies compared to field studies illustrates the influence of 

light conditions on stomatal conductance and transpiration. In the present study, E was 

significantly different among treatments (p<0.001) and in the interaction of treatment and 

species (p=0.013), but E was not different between species (p=0.573). The hypothesis 

that flooding would increase stomatal conductance and transpiration in common reed was 

supported. Similarly, the hypothesis that flooding would decrease the stomatal 

conductance and transpiration in flooded johnsongrass was also supported (Figure 1d).  

The gvs, gv, and E were not different dry johnsongrass and flooded common reed. 

However, when considering differences in species as well as treatments, the different 

adaptations to flooded conditions of johnsongrass and common reed become apparent in 

a significant interaction. 

Increase of transpiration was correlated with an increase in stomatal conductance. 

Higher stomatal conductance means the plant is taking in more CO2, which allows the 

plant to produce more triose-phosphates and ATP in photosynthesis (Farquhar and 

Sharkey 1982).  The increase in stomatal conductance could be an explanation as to why 

common reed is able to reproduce quickly and colonize wetlands with rapid rhizomatous 

growth. Common reed had an increase in E and gvs under flooding, which is related to 

tolerance of waterlogged soils in field settings.  Tolerance or preference to waterlogged 

soils could be an important factor to the invasive potential and actions of common reed.  

Decreased E and gvs under flooded conditions in johnsongrass indicate decreased growth 

potential.  The inability of the plants to remove water from the soil caused them to act water 
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stressed. This stress would ultimately lead to lower amounts of CO2 intake and lower 

photosynthetic products. Individuals from the population of johnsongrass used in this study are 

therefore not an invasion treat to  chronically waterlogged environments. However, future 

research is needed to determine if this population could acclimate to a wetter environment, or if 

there is variation in adaptations to waterlogged soils among populations of johnsongrass.   
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Figure 1. Effects of flooding on transpiration and vapor conductances in common reed 

and johnsongrass. (A) stomatal conductance to water vapor, gvs, (B) boundary layer 

conductance to water vapor, gva, (C) total conductance to water vapor, gv, and (D) 

transpiration, E. Bars show the mean of 5 replicates ± standard error. Black bars indicate 

flooded plants and gray bars indicate dry plants.  
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