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ABSTRACT 

Most walleye Sander vitreus populations in Kansas are supplemented or sustained 

with stocking.  In 2006, gamete collection for hatchery production was initiated at Cedar 

Bluff Reservoir because the walleye population has a high abundance of potential brood 

fish and has been sustained by natural reproduction since 2001.  However, no quantitative 

index has been developed to assess walleye recruitment in this fishery.  Accordingly, 

from July through November 2010, I evaluated catch-per-unit-effort (overnight sets) of 

age-0 walleye in 19 and 25-mm mesh gill nets biweekly and at random and standard sites.  

There was not a significant difference in catch-per-unit-effort between site types (t = -

0.04, df = 142, P = 0.97) or mesh sizes (n = 144, U = 2,154, P = 0.07).   

Recruitment also can be evaluated with a one-time age structure sample.  

Therefore,  the precision among age estimates  was evaluated through taking  a sample of 

95 walleye: (1) by comparing age estimates between two readers, and (2) the consistency 

of estimates from one reader among hard structures, by evaluating age bias plots, age 

frequency tables, and coefficients of variation derived from scales, sagittal otoliths, and 

sectioned sagittal otoliths.  Best fit regression slopes from age bias plots derived with 

otoliths and sectioned otoliths were not significantly different from a slope of one (t = 

1.39, df = 2, P < 0.01; t = 0.44, df = 2, P < 0.01) suggesting strong agreement among 

estimates.  However, the best fit regression slope derived by using scales was 

significantly different from one (t = -3.42, df = 2, P < 0.01), suggesting scales did not 

provide adequate precision for additional recruitment analyses.   
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 Age structure data were utilized, ages estimated from 210 fish (5 to 6 individuals 

in each 10 mm length group) and then extrapolated to a sample of un-aged fish (n = 928) 

based on size classes, to evaluate recruitment variability with the Recruitment Variability 

Index.  The Recruitment Variability Index estimate was 0.69 and similar to estimates 

from over a decade earlier suggesting consistent recruitment in this population.  An age 

structure was also used and historical catch-per-unit-effort of age-0 walleye to evaluate 

their utility in predicting year-class strength.  Historical catch-per-unit-effort of age-0 

walleye explained 72% (adjusted r2 value) of the variation in the current estimated size of 

the corresponding year-classes (F = 29.29, df = 11, P < 0.01).  Natural reproduction 

appears to be sustaining both walleye population and gamete harvest at Cedar Bluff 

Reservoir.  
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PREFACE 

This thesis is written in the style of North American Journal of Fisheries Management.  
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INTRODUCTION 

Recruitment is a major factor that influences the size and structure of fish 

populations (Gulland 1982; Allen and Pine 2000; Quist 2007).  Annual variability in 

recruitment is common, (Sissenwine et al. 1988) especially in walleye Sander vitreus 

(Smith and Krefting 1954; Smith and Pycha 1960; Forney 1976; Kallemeyn 1987; 

Hansen et al. 1991; Quist et al. 2003a; Quist et al. 2010).  Accordingly, walleye 

recruitment has been the impetus for numerous research projects (e.g., Busch et al. 1975; 

Willis and Stephen 1987; Madenjian et al. 1996; Hansen et al. 1998; Quist et al. 2003a).  

Factors that have been determined  to affect walleye recruitment and early life history 

include: the rate of warming in spring (Busch et al. 1975; Madenjian et al. 1996), 

reservoir discharge (Willis and Stephen 1987), spawner density and gizzard shad 

Dorosoma cepedianum density (Madenjian et al. 1996),  intraspecific competition 

(Hansen et al. 1998; Quist et al. 2003a), temperature variation in May of the year of 

hatching, predation by and competition with yellow perch  Perca flavescens, (Hansen et 

al. 1998), air temperature, water elevation in the spring, precipitation, wind speed, 

abundance of white crappie Pomoxis annularis, white bass Morone chrysops, and gizzard 

shad (Quist et al. 2003a).  Many of these factors cannot be altered by fisheries managers 

(Fielder 1992).  However, stocking is a tool commonly used to mitigate for low 

recruitment (Forney 1976; Laarman 1978; Mosher 1987; Ellison and Franzin 1992; 

Fielder 1992; Fayram et al. 2005) and influence angler perceptions (Fayram et al. 2006); 

therefore, many state agencies devote resources to this management practice.  
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In Kansas, walleye hatchery production and stocking rely on gamete harvest from 

naturalized populations.  Because the walleye is a valuable portion of the angling 

experience in Kansas (Burlingame 1998; KDWPT 2008), reservoirs used for gamete 

harvest must maintain adult populations to insure hatchery production (Quist et al. 2010) 

and the recreational fishery.  The walleye population of Cedar Bluff Reservoir has been 

used for gamete harvest since 2006.  Over the last decade, natural recruitment at Cedar 

Bluff Reservoir has been highly variable (Kansas Department of Wildlife Parks and 

Tourism, Cedar Bluff Reservoir Progress and Management Reports, 1998-2010) and a 

concern to Kansas Department of Wildlife Parks and Tourism (KDWPT) fisheries 

managers (D. Spalsbury, KDWPT District Fisheries Biologist, personal communication).  

Accordingly, reliable recruitment data are necessary for efficient management of this 

valuable walleye population.    

An evaluation of recruitment is best obtained by using an index for estimating 

year-class abundance (Isermann et al. 2002; Quist 2007).  An index for estimating year-

class abundance can be developed from long-term data and derived by following an 

initial year-class or recruitment-class over time (Willis 1987; Isermann et al. 2002; Quist 

2007).  Age-0 walleye abundance in late September is a common index of future 

abundance of the year-class or year-class strength in the fishery (Kempinger and 

Churchill 1972; Serns 1982; Willis 1987; Quist 2007).  In Kansas, standard state protocol 

(SSP) sampling for walleye consists of one to several complements of overnight sets of 

gill nets; the number of sets is influenced by lake size (D. Spalsbury, KDWPT District 

Fisheries Biologist, personal communication).  A complement contained four separate 
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gill nets, each 30.5-m X 1.8-m, with mesh (bar measure) of 25, 38, 64, and 102-mm, 

respectively.  Catch-per-unit-effort (CPUE) of age-0 walleye in the 25-mm mesh gill net 

is used as an index of age-0 abundance (Willis 1987; Quist 2007), but there is uncertainty 

in the consistency of recruitment to gear and whether enough units were deployed to 

detect significant changes overtime.  In 2010, KDWPT changed SSPs to standards after 

Miranda and Boxrucker (2009), which consist of eight core mesh sizes, including panels 

with 19, 25, 32, 38, 44, 51, 57, and 64-mm bar mesh.  Each panel is 3.1-m X 1.8-m.  

 In addition, fall night-time electrofishing is widely used gear to sample age-0 

walleye.  In Wisconsin, Serns (1982 and 1983) reported a high correlation between fall 

night-time electrofishing catch-per-effort and fingerling and yearling density, and Fayram 

et al.  (2005) used fall electrofishing to evaluate stocking rates.  Lucchesi (2002) used 

night electrofishing in September to evaluate the contribution of stocked walleye fry and 

fingerlings to year-class strength in South Dakota waters.  In Kansas, Mosher (1987) 

reported electrofishing for age-0 walleye at Lyon State Fishing Lake provided a useful 

recruitment index of age-0 walleye too small to be sampled with traditional gill nets.  

Accordingly, spatial and temporal evaluation of gears used to index age-0 abundance 

would be valuable for making management decisions at Cedar Bluff Reservoir.  

Furthermore, it might provide information pertinent to the management of walleye at 

other reservoirs.  

Due to the paucity of long-term, standardized data sets capable of detecting 

significant changes in recruitment, a number of techniques using age structure 

information have been developed to estimate recruitment variability (e. g. Guy and Willis 
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1995; Maceina 1997; Isermann et al. 2002).   Age structure data are used in a variety of 

population analyses including: establishing growth rate, recruitment, and year-class 

strength, ranking it among the most influential of biological variables (Campana 2001).  

To avoid excessive mortality, scales typically have been used by KDWPT to estimate age 

of individual walleye and most other fish species valued by anglers.  However, sagittal 

otoliths are reported to be a more accurate (Erickson 1983) and precise (Campbell and 

Babaluk 1979; Marwitz and Hubert 1995; Kocovsky and Carline 2000; Isermann et al. 

2003) structure to age walleye.  In Kansas, precision and correlation of age estimations 

made with sagittal otoliths and scales have not been formerly evaluated.  High quality age 

estimations are essential to age structure analyses (Maceina et al. 2007).  Walleye 

longevity varies with latitude (Colby et al. 1979; Quist et al. 2003b); therefore, an 

evaluation of the precision in age estimations among hard structures in Kansas is 

warranted.   

The Recruitment Variability Index (RVI) was developed by Guy and Willis 

(1995), to estimate recruitment variability using age structure information.  

The RVI is estimated as:  

RVI = [ SN / ( NM + NP )] - ( NM / NP ), 

where SN is the sum of the cumulative, relative frequencies across age-classes in the 

sample, NM is the number of year-classes missing within the sample, and NP is the 

number of year-classes in the sample.  Recruitment variability index varies from 1 to -1, 

and values close to 1 represent stable recruitment.  Recruitment variability index 

estimates are reduced with increasing number of missing year-classes.  Assumptions for 
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valid  estimates of  RVI include: only fish fully recruited to the sampling gear can be 

used, samples need to represent more  than three year-classes, NP > NM, catch-at-age is a 

valid representation of year class strength, and year-classes older than those represented 

in the sample do not occur.  Recruitment Variation Index is a useful tool to evaluate 

recruitment variability when a long-term data set is not available (Quist 2007).   

The purpose of this study was to improve the understanding of walleye 

recruitment at Cedar Bluff Reservoir by addressing the following objectives: (1) establish 

the framework to develop an index of age-0 abundance by evaluating CPUE of age-0 

walleye, spatially and temporally, in a variety of gears; (2) determine the structure and 

preparation method that produces the most precise age estimations by comparing 

precision in age estimations among structures and readers; (3) estimate recruitment 

variability by using the RVI; and (4) determine relevance of historical data by evaluating 

the relationship between fall CPUE of age-0 walleye in the 25-mm mesh gill nets on 

standard sites and the relative frequency of the corresponding year-classes from the 

estimated age structure.  
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METHODS 

Study site—Cedar Bluff Reservoir is situated on the Smoky-Hill River, in 

northwest Kansas.  The watershed was approximately 6,928.23 km2 (Kansas Department 

of Health and Environment, http://www. kdheks. gov/tmdl/ss/CedarBluffE. pdf , accessed 

16 January 2012) and the landcover types within the watershed were almost exclusively 

rangeland and row crops (Data Access and Support Center, Kansas land cover).  Cedar 

Bluff Reservoir had a surface area of 2,678.21 ha, a mean depth of 7.8 m and was 

marginally eutrophic at conservation pool.  The reservoir ranged from 3.7 to 5.04 m 

below conservation pool during the study period (U.S. Bureau of Reclamation, 

(http://www.usbr.gov/gp-bin/arcweb_cbks.pl, accessed 16 January 2012).  Temperature 

and dissolved oxygen concentrations rarely stratify at Cedar Bluff Reservoir.  

Age-0 abundance—Site type, gear, and time of sampling for young cohorts were 

evaluated from July through November, 2010.  Gill nets with 19 and 25-mm (bar 

measure) mesh, each 30.5-m X 1.8-m, were deployed biweekly in overnight sets on four 

standard sites and four sites randomly chosen.  Standard sites were sampled with 25-mm 

mesh gill nets from 1998 to present.  Random sample locations were selected from a map 

of the reservoir surface layered by a grid of 333-m X 333-m quadrats .  The map was 

produced by the Kansas Biological Survey in ArcGIS 10 (M. Houts , Kansas Biological 

Survey, personal communication) and provided by KDWPT (D. Spalsbury, KDWPT 

District Fisheries Biologist, personal communication).   A random number generator was 

used to select four quadrats in each sample period and a gill net was deployed within each 

quadrat in a location that met the specifications listed in Miranda and Boxrucker (2009).  

http://www.kdheks.gov/tmdl/ss/CedarBluffE.pdf
http://www.usbr.gov/gp-bin/arcweb_cbks.pl
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These specifications include: nets must be deployed along the bottom, perpendicular to 

the bank, normally in depths of 3-8 m, and they must not be set on steep slopes (e.g., 

>45°) or over drop-offs that can compress and close the meshes (Miranda and Boxrucker 

2009).   Grid sections devoid of habitats listed in Miranda and Boxrucker (2009) were 

eliminated.   

Nighttime electrofishing also was evaluated as a potential sampling method.  

There was no KDWPT standard electrofishing protocol for walleye; however, based on 

previous experience and a literature review (Forney 1976; Colby et al.  1979). There were 

three sample periods (Reynolds 1983); one in August, one in early September, and one in 

late September.  Electrofishing samples were collected at four standard sites and four 

random sites each sample period.  Random electrofishing sites were selected with the 

same procedure as the random gill net sites.  Samples were collected after sunset.  Each 

site was fished for 600 seconds of electrified-field-time with a single netter, which is 

similar to the KDWPT standard protocol for sampling largemouth bass Micropterus 

salmoides.  The electrofishing boat was a 1996 Smith-Root SR16S (16’ long) [Smith 

Root GPP 5. 0 control box] configured for two anode booms.  The high output DC setting 

and an output pulse frequency of 60 pps allowed an amperage range from 12 to 14 amps.   

Ten walleye per 10 mm length-group from fall 2010 gill net samples were aged 

by one reader using the whole-view otolith method.  Only fish estimated as age-0, or 

determined to be age-0 by length at the time of capture, were included in CPUE 

estimates.  A student’s t-test was used to compare CPUE between site types and a Mann-
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Whitney U test was used to compare CPUE between gill net mesh sizes.  Due to small 

sample size, no statistical analysis was performed on the electrofishing samples.  

Aging structures—Age estimations among hard structures (otoliths and scales) 

and preparations were assessed to determine the most precise aging method.  In spring 

2010, during the annual harvest of walleye gametes by KDWPT from Cedar Bluff 

Reservoir, walleye were collected with 25-mm mesh trap-nets, and 76-mm mesh gill nets.  

Each gill net measured 91. 44-m X 1. 83-m.  Paired samples of scales and sagittal otoliths 

were removed systematically in consecutive 20 mm length-groups in an attempt to collect 

three individuals of each sex per group.  Scales were removed between the lateral line 

and anterior portion of the dorsal fin and placed in coin envelopes labeled with fish 

length, sex, and date of capture (Devries and Frie 1996).  In the lab, scales were cleaned 

with water to remove fish mucus and dirt.  Several scales from each fish were pressed 

with an Ann Arbor roller press onto acetate impression slides (25-mm X 75-mm) to 

provide a permanent impression of scale annuli.  Scale impressions were randomized, 

assigned a code number, and separated from length measurements to minimize reader 

bias (Campana 2001).  Impressions were photographed by using an Olympus szx16 

microscope and Altra 20 camera.  Two readers independently estimated age from the 

same photograph of one scale per fish.  

Sagittal otoliths were removed from fish and placed in a vial with the same code 

as the corresponding fish scale impression (Devries and Frie 1996).  A mixture of 50% 

glycerin and water was added to the vial to promote annulus visibility (Devries and Frie 

1996).  Once the otoliths had sufficiently cleared and annuli were visible, within 4 to12 
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days, photographs were taken with the same equipment used for the scales.  Two readers 

independently estimated age from the same photograph of one whole-view otolith per 

fish.   

Once photographed, sagittal otoliths were mounted in Enviro Tex Lite epoxy© 

and cut in a transverse section with a Buehler Isomet low-speed saw on the posterior end 

near the core (Secor et al.  1991).  The anterior side of the otolith was then mounted to a 

clear glass slide with Super Glue Liquid© and cut to a thin section of approximately 300 

µm.  The mounted thin sections were photographed with an Olympus BX51 microscope 

and an Olympus DP71 camera.  Two readers independently estimated the age from the 

same photograph of one sectioned otolith per fish.   

 Age bias plots, age frequency tables, and coefficients of variation were produced 

to analyze precision in age determinations made with scales, whole-view otoliths, and 

otolith thin-sections (Campana1995).  Additionally, exact agreements in age estimates 

among hard structures and readers were calculated.  Statistically significant results were 

determined by comparing slopes of best fit regression lines generated from age bias plots 

to a slope of one (complete agreement) with an analysis of covariance (ANCOVA).  

RVI: relevance of historical data—The collection protocol,  during the spring 

2011 harvest of walleye gametes, was modified to improve precision, and include smaller 

size classes to better estimate year-class strength.  Accordingly, five walleye, independent 

of sex, were collected in consecutive 10 mm length-groups (Devries and Frie 1996).   

Additionally, 19 and 25-mm mesh gill nets, each 30.5-m X 1.8-m, were deployed 

concurrently with the annual gamete harvest.  Sagittal otoliths were extracted from 
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individuals until the length-group sub-sample size was met.  Total lengths and sex were 

recorded for all subsequent captures and, prior to their release, walleye were marked with 

a whole punch through one of the rays on the anterior edge of the anal fin to avoid 

counting the same individual more than once.  Age was estimated from sectioned, sagittal 

otoliths by two readers as above.  A third reader was used when there was disagreement 

in an age estimate and only estimates agreed upon by two readers were used in analyses.  

Age structure of the population was estimated with an age-length-key (Bettoli and 

Miranda 2001), produced by Fish BC 3.0 software (Fish BC. 2007.  Fisheries Age and 

Growth Software, J.  C. Doll. Ball State University 2007).  Age structure was used to 

estimate RVI.   

Linear regression was used to evaluate the relationship between fall CPUE of age-

0 walleye in the 25-mm mesh gill nets on standard sites and the relative frequency of the 

corresponding year-classes from the estimated age structure.  For example, fall CPUE of 

age-0 walleye in 2003 was plotted against the relative frequency of age-8 walleye.  

Catch-per-unit-effort of age-0 walleye in 2008 was plotted against the relative frequency 

of age-3 walleye and so forth.  
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RESULTS 

Age-0 abundance —In nine independent  sampling periods 32 sites were fished 

with gill nets (Table 1).The total number of walleye captured was 581, of which 258 were 

aged by one reader using the whole-view otolith method.   Only fish estimated as age-0, 

or determined to be age-0 by length at the time of capture, were included in CPUE 

estimates.  The longest age-0 walleye captured was 297 mm in November and the 

shortest was 154 mm in August.   

Length frequency distributions for each sampling period are presented in Figure 1.   

Age-0 walleye were first collected in 19-mm mesh gill nets in August.  A single age-0 

walleye was captured in August in the 25-mm mesh gill net.  By October, more age-0 

individuals were captured in the larger mesh size than the smaller mesh size.  However, 

the smaller mesh size continued to capture fish through the study.  When the mean total 

length of age-0 walleye was less than 240 mm the 19-mm mesh gill net captured more 

individuals than the 25-mm mesh gill net.  Age-0 walleye CPUE ranged from 0 to 12. 5 

per-net-night.  Catch-per-unit-effort in both site types, increased through the duration of 

the study (Figure 2A).  Between random and standard sites CPUE was not significantly 

different (t = -0.04, df = 142, P = 0.97).  In October and November, CPUE was higher in 

the 25-mm mesh gill net than in the 19-mm mesh gill net(Figure 2B); however, there was 

not a significant difference in CPUE between the two mesh sizes (n = 144, U = 2,154, P 

= 0.07).   
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Four age-0 walleye were captured in 14,400 seconds of electrofishing effort over 

three sampling dates comprised of 24 sample sites (Table 2).  No statistical analysis was 

performed on the electrofishing data due to small sample size.  

Aging structures —In spring 2010, during the annual harvest of walleye gametes 

by KDWPT at Cedar Bluff Reservoir, 95 walleye were collected in 25-mm mesh trap-

nets and 76-mm mesh gill nets.  Total length ranged from 339 mm to 735 mm.  Paired 

samples of scales and sagittal otoliths were removed from walleye in eighteen 20 mm 

length-groups.  The oldest fish captured, estimated by the otolith section method, was 13 

years old and the youngest was 2 years old.  

Age bias plots (Figures 3A, B, and C) and age frequency tables (Tables 1A, B, 

and C), were produced to visually assess precision in age estimations between readers.  

Age bias plots and age frequency tables revealed greatest precision between readers was 

derived with age estimates from otolith sections (Figure 3A and Table 1A).  Age bias plot 

(Figure 3B) and age frequency table (Table 1B) of whole-view otoliths indicate 

decreasing precision with age among the age estimates by two readers.  Using whole-

view otoliths, reader age estimates were not congruent at age eight and older (Table 1B).  

Using otolith sections, reader age estimates were congruent among 30 fish age eight and 

older; half of which were estimated to be age-11 (Table 1A).  Slopes of best fit regression 

lines from age bias plots between readers using the whole-view otolith (t = 1.39, df = 2, P 

< 0.01) and sectioned otolith (t = 0.44, df = 2, P < 0.01) methods were not significantly 

different from a slope of one, but the r2 value was higher and the slope was closer to one 

for otolith sections (Figure 3A, B).  Consistency in age estimates between readers was 
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lowest when estimates were based on scales (Figure 3C and Table 1C) and slope of the 

best fit regression line was significantly different from one (t = -3.42, df = 2, P < 0.01).  

The number of congruent age estimates between readers using scales was low in all 

estimated age classes compared to age estimates from other structures (Table 1C).  Age 

frequency distributions for each structure as estimated by reader one are presented in 

Figure 4.  The age frequency distributions derived from age estimates using scales and 

whole-view otoliths suggest a more productive population compared to the age frequency 

distribution derived from age estimates using otolith sections.  Also, age frequency 

distributions by using scales and whole-view otoliths suggest little variation in year-class 

strength.  In the age frequency distribution from otolith sections a pattern of strong year-

class production was identified.    

Age bias plots (Figures 5 and 6) and age frequency tables (Tables 2 and 3) were 

produced to visually analyze precision in age estimations among aging methods for each 

reader.  Best fit regression slopes from each age bias plot were significantly different 

from a slope of one (Table 4A).  Using the scale and whole-view otolith methods, both 

readers tended to under-estimate the age of older fish compared to age estimated with the 

otolith section method (Figure 5A and B and Figure 6A and B).  Paired observations in 

Tables 2A and B and 3A and B indicate younger age assignments for older fish by each 

reader using whole-view otoliths and scales relative to assignment based on otolith 

sections.   

For each reader, age estimates comparing whole-view otoliths and scale methods 

appear more precise than other structure comparisons (Figure 5C, 6C and Table 2C, 3C).  
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However, age estimates from scales and whole-view methods had bias in the same 

direction relative to age estimates using otolith sections.   

Coefficients of variation, and reader agreement among age estimates and aging 

methods are presented in Table 5.  Between-reader comparisons yielded the least amount 

of variation using the otolith section method.  Variation increased with age for the whole-

view ototlith and scale method between-reader comparisons.  However, there was more 

variation between readers in age estimates  by using scales.  Otolith sections produced the 

highest percent agreement (92%) in between-reader comparisons, followed by whole-

view otoliths (53%) and scales (37%).   

Comparisons between aging methods for each reader had more variation than did 

between-reader comparisons.  Comparisons between aging methods for each reader had 

lower agreement than comparisons between readers using otolith section and whole-view 

otolith methods.  

In two of the nine comparisons, male and female best fit regression slopes were 

determined to be significantly different (Table 4B).  However, the direction of the 

differences was the same and not biologically meaningful in this context.  Sexes were 

combined and the best fit regression slope derived from the resulting age bias plot was 

used in subsequent analyses.  

RVI: relevance of historical data —In spring 2011, during the annual harvest of 

gametes at Cedar Bluff Reservoir, otoliths were extracted from (n = 210) walleye for age 

estimation by the otolith section method.  An additional 928 individuals were marked and 
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released.  Fifty individuals were recaptured.  Mean lengths-at-age of the individuals used 

for age estimation are presented in Figure 7.   

Age structure was estimated from 210 individuals (5-6 individuals in each 10 mm 

length group) and then extrapolated to un-aged fish by size class with an age-length-key 

(Figure 8).  Fourteen consecutive year-classes were identified.  However, reproductively 

immature fish were undersampled because capture effort was concentrated in spawning 

areas.  Age-1 and age-2 fish were removed from RVI analysis.  The RVI estimate was  

0. 69 = [8. 27/(0+12)]-(0/12).   

Catch-per-unit-effort of age-0 walleye in fall from the 25-mm mesh gill net 

explained 72% adjusted r2 value of the variation in the estimated current size of the 

corresponding year-classes (F = 29. 29, df = 11, P < 0. 01) (Figure 9).  Age-1 and age-2 

fish were removed from linear regression analysis.  Positive residuals indicate stronger 

than expected year-classes (e. g.  1999 year-class) and negative residuals indicate weaker 

than expected year-classes (e. g.  2005 year-class).  

  



16 
 

 

DISCUSSION 

  Age-0 abundance—Age-0 walleye were first collected in the 19-mm mesh gill 

net at a randomly chosen site in August.  The 19-mm mesh gill net had higher CPUE than 

the 25-mm mesh gill net until October when mean total length of age-0 walleye was 

greater than 240 mm.  No significant difference in CPUE between the mesh sizes was 

detected with the non-parametric Mann-Whitney U test.  Monitoring CPUE in the 19-mm 

mesh gill net over time might provide a useful index of age-0 walleye recruitment.  

Catch-per-unit-effort in the 19-mm mesh gill net was highest in August, outside the 

traditional sampling season (September-October).  Development of a walleye recruitment 

index based on samples from August will reduce time spent sampling during the 

traditional season by moving sampling of age-0 walleye to August.  However, Kempinger 

and Churchill (1972), and Forney (1976), suggested smaller age-0 walleye might have 

reduced survival relative to larger age-0 walleye.  Consequently, survival to age-1 might 

be reduced for age-0 walleye too small to be captured in the 25-mm mesh gill net but 

large enough to be captured in the 19-mm mesh gill net.  Therefore, an index developed 

from the 19-mm mesh gill net might erroneously forecast a strong year-class when the 

year-class is dominated by smaller individuals with low survival to age-1.  Collection of 

paired CPUE by mesh size over time will be required to answer this question.    

 Variation in CPUE was more equal between site types than between mesh sizes, 

and allowed the use of a parametric technique.  A student’s t-test indicated no significant 

difference in CPUE between the two site types.  Gill net deployment within a random 

quadrat was constrained to the conditions listed by Miranda and Boxrucker (2009).  



17 
 

 

These conditions also were met on standard sites.  Habitat within a depth of 3-8 m, 

bottom slope < 45°, and free of woody debris varies little in Cedar Bluff Reservoir.   

Additionally, the 2010 year-class was the strongest year-class ever measured at Cedar 

Bluff Reservoir as judged by CPUE in traditional gill nets.  Because sampled habitat 

varied little and age-0 walleye were ubiquitous, similar catch rates at the two site types 

was not surprising.  These data suggest the development of a recruitment index based on 

samples of age-0 walleye CPUE from either site type might be effective forecasts of 

future year-class strength.    

 The higher catch rates using gill nets compared to electrofishing suggest that age-

0 walleye might remain in open water, in depths where electrofishing is least effective.  

Additionally, Cedar Bluff Reservoir is characterized by high conductivity which has been 

shown to limit electrofishing success (Reynolds 1983).  Electrofishing might be more 

effective later in the fall when water temperatures are lower and individuals are less 

likely to be restricted to deeper waters.  

 Aging structures—In a review of fish aging procedures, Maceina et al.  (2007) 

suggested precision of age estimates should be assessed in all aging studies.  Inaccurate 

age estimates can lead to erroneous population assessment and mismanagement (Beamish 

and McFarlane 1995).  The accuracy of age estimates was not evaluated in this study.  

However, otolith sections were determined, both graphically and statistically, to produce 

the most precise age estimations.  Age estimations derived from whole-view otoliths also 

were precise between readers.  Scale based age estimations had low precision between 



18 
 

 

readers.  Additionally, all between structure comparisons for each reader had low 

precision.  

  Precision between readers in age estimates derived from whole-view otoliths 

decreased with fish age.  Age estimates from more experienced readers might be 

different, but reader experience did not appear to effect precision in age estimates from 

otolith sections.  Results from this study agree with Isermann et al. (2003), that whole-

view otoliths produce age estimates with high precision between readers for fish age-5 

and younger.  Reader experience potentially influenced age estimates using scales; 

however, results from this study agree with results from other studies (Campbell and 

Babaluk 1979; Marwitz and Hubert 1995; Kocovsky and Carline 2000; Isermann et al. 

2003) that indicate scales produce less precise age estimations relative to sagittal otoliths.  

Both readers tended to underestimate the age of older fish using scales compared to age 

estimated with otolith sections.  This produces an age frequency distribution derived from 

scales that suggests a younger more productive population compared to age frequency 

distribution derived from age estimates using sectioned otoliths.  Additionally, reader 

agreement was low (35%) using scales, indicating strong year-classes might be 

incorrectly identified, or might be assigned to multiple age-classes and not identified 

(Figure 4).  

 To obtain precise age estimates of walleye at Cedar Bluff Reservoir, I recommend 

sectioned otoliths be used to estimate age.  If the sample is restricted to fish age-5 and 

younger, whole-view otoliths can be used to obtain precise age estimates.  Annual 

sampling using overnight sets of gill nets and otolith removal from captured fish, at 
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Kansas Reservoirs will increase the amount of information collected with no additional 

mortality.  The walleye population size at Cedar Bluff Reservoir as estimated with a 

multiple mark recapture   technique was 8,449 (95% confidence limits = 6,401-11,265).  

Age-structured subsamples were used in this study, and 210 walleye were sacrificed for 

otolith removal, or approximately 3% of the population estimate.  Age structure of this 

quality is necessary to evaluate population parameters (e. g.  recruitment, growth, and 

mortality).  However, estimates of age structure based on this level of precision might be 

necessary only once every four to five years (approximate cycle of strong year-classes 

Figure 8) to provide adequate information to evaluate recruitment variability, population 

growth, and mortality rates.    

 RVI: relevance of historical data—The strength of the RVI is that recruitment can 

be evaluated with one sampling event (Guy and Willis 1995; Isermann et al.  2002; and 

Quist 2007).  Quist (2007) reported mean RVI values adequately indexed recruitment 

variability when other techniques using age-structure data did not.  Guy and Willis 

(1995), Isermann et al.  (2002), and Quist (2007) agree that recruitment variability is best 

assessed with a long-term data set.    

The estimated age structure might be bias toward reproductively active fish and 

therefore, fish younger than age-3 were removed from the analysis.  The calculated RVI 

in 2011 was 0. 69, which is similar to the estimate provided by Quist (2007) for Cedar 

Bluff Reservoir using age structure data from the mid-1990s.  These values suggest 

recruitment was similar from the mid-1990s to the present.  However, Isermann et al. 

(2002) reported that RVI is sensitive to missing year-classes and relatively insensitive to 
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weak year-classes.  The current age-structure estimate (Figure 8) identified no missing 

year-classes.  Although present, Age-10, 11, and 14, were relatively weak year-classes.   

 Historical data for Cedar Bluff Reservoir contains a long-term (1998 to present) 

data set with CPUE of age-0 walleye at standard sites.  Linear regression was used to 

determine variation in year-class strength as explained by age-0 CPUE of the year-class.  

Age-0 CPUE explained 72% (r2) of the variation in the estimated current size of the 

corresponding year-class.  Age structure was used to estimate the current size of the year-

class.  Fall CPUE of age-0 walleye in the 25-mm mesh gill net on standard sites appeared 

to be an adequate index of walleye recruitment.   
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MANAGEMENT IMPLICATIONS 

Temporal variation in the estimated year-class size of age-0 walleye is common in 

Cedar Bluff Reservoir (KDWPT Cedar Bluff Reservoir Progress and Management 

Reports 1998-2010).  Catch-per-unit-effort of age-0 walleye from gill nets ranged from 0. 

5 to 10. 25 over the last 13 years.  However, Willis (1987) and Quist (2007) reported 

catch rates of age-0 walleye in Kansas reservoirs were highly correlated to and provide an 

excellent measure of recruitment to age-1.  Cedar Bluff Reservoir is frequently sampled 

and long-term trend data might provide the best means of assessing recruitment.  In 

addition, changes in SSP warranted an evaluation of the gear used to sample age-0 

walleye.   

No significant difference could be detected between CPUE of age-0 walleye in 

two mesh sizes or on two site types; however, I suggest use of the 25-mm mesh gill net 

during the last week of October or the first week of November to sample age-0 walleye.  

This gear type provides temporal consistency in data bases and recruitment variability is 

best assessed with a long-term dataset.  Catch-per-unit-effort was higher in the 25-mm 

mesh gill net in late October and early November than any other time or net combination.  

Additionally, CPUE of age-0 walleye in the 25-mm mesh gill net explains 72% (r2) of the 

variation in future year-class strength.  Considering variability in angling pressure 

(12,762 h/year in 1997 to 149,691 h/year in 2003; unpublished creel survey data) and 

resulting variability in harvest among age classes, explaining 72% (r2) of the variation in 

year-class strength is substantial.  
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The water level in Cedar Bluff Reservoir fluctuates resulting in standard sites that 

might be dry or deviate from the gill net deployment specifications suggested by Miranda 

and Boxrucker (2009).  In fall of 2010, there was not a significant difference in age-0 

walleye CPUE at standard and randomly chosen sites.  If gill net deployment 

specifications are not met at standard sites, random sites that meet the specifications 

provide an adequate alternative to sample age-0 walleye.       

Natural reproduction appears to be sustaining the walleye population at Cedar 

Bluff Reservoir.  Walleye recruitment has been observed every year since at least 1997.  

Some years (2003, 2008, and 2010) realized exceptional walleye recruitment.  If 

recruitment is detected every year and the cyclic pattern of large walleye year-class 

production continues, natural reproduction will support a gamete harvest and a vibrant 

sport fishery.  Ellison and Franzin (1992) reported the possibility of introducing negative 

genetic effects of artificial selection when stocking into natural, self-sustaining walleye 

populations.  Also, there might be underlying genetic benefits to a naturally reproducing 

brood fish population.  Accordingly, stocking walleye in Cedar Bluff Reservoir is not 

recommended.  

Similar to results of many previous studies at other latitudes, ages estimated from 

otoliths were determined to be more precise than ages estimated from scales.  Using 

scales, reader agreement was 35%.  Using whole-view otoliths, variation in age 

estimation was considerably lower but increased with age.  Sectioned otoliths produced 

age estimations with the highest agreement and lowest variation and therefore, produced 

the highest quality age estimates.  These data produced markedly different estimates of 
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year-class strength relative to data generated for other hard structures (Figure 4).   

Accordingly, the periodic sacrifice, of a sample of walleye for otolith removal, might be 

justified to obtain high quality age structure information, if recruitment is evaluated or if 

growth parameters are needed for population growth or harvest models.   
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Sample date Grid number Latitude Longitude 
Standard sites    
 302 38.80524 -99.74343 
 352 38.78084 -99.72259 
 134 38.79099 -99.79991 
 241 38.78954 -99.75806 
Random sites    
7-19/7-21 353 38.79026 -99.77139 
 309 38.78044 -99.73853 
 268 38.79072 -99.80735 
8-2/8-3 172 38.78335 -99.78055 
 294 38.78644 -99.72268 
 165 38.78332 -99.78425 
 331 38.77955 -99.74968 
8-17/8-20 190 38.78416 -99.77334 
 238 38.78248 -99.75484 
 256 38.78248 -99.75484 
 355 38.79896 -99.73572 
8-28/8-29 309 38.78044 -99.73853 
 331 38.77955 -99.74968 
 101 38.79087 -99.72306 
 210 38.79106 -99.73382 
9-14/9-18 268 38.79072 -99.80735 
 256 38.78248 -99.75484 
 172 38.78335 -99.78055 
 101 38.79087 -99.72306 
9-25/9-26 197 38.78229 -99.73555 
 315 38.79944 -99.73958 
 321 38.78133 -99.73540 
 130 38.77963 -99.80447 
10-9/10-10 210 38.79106 -99.73382 
 165 38.78332 -99.78425 
 255 38.78241 -99.75224 
 341 38.78176 -99.72609 
10-20/10-22 331 38.78182 -99.72988 
 350 38.77887 -99.72461 
 335 38.79356 -99.73011 
 238 38.78248 -99.75484 
11-6/11-7 266 38.77437 -99.75203 
 321 38.79896 -99.73572 
 192 38.79039 -99.77629 
 167 38.79078 -99.78571 

Table 1.—Date and location of sites sampled for walleye with gill nets at 
approximately two week intervals July to November 2010, at Cedar Bluff Reservoir. 
Standard sites were sampled with both sizes of gill net each sample.  Random sample 
locations were selected from a map of the reservoir surface layered by a grid of 333-m X 
333-m quadrats.  The map was produced by the Kansas Biological Survey in ArcGIS 10 
and provided by KDWPT.   A random number generator was used to select four quadrats 
in each sample period and each random site was sampled with both sizes of gill net. 
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Sample date Grid number 
Standard sites  
 331 
 134 
 172 
 302 
Random sites  
8-4 351 
 293 
 241 
 165 
9-1 105 
 114 
 264 
 350 
9-27 233 
 196 
 354 
 337 

Table 2.—Date and grid number location of sites sampled for walleye with 
electrofishing in Fall of 2010, at Cedar Bluff Reservoir.  Standard sites were sampled 
each sample.  Random sample locations were selected from a map of the reservoir 
surface layered by a grid of 333-m X 333-m quadrats.  The map was produced by the 
Kansas Biological Survey in ArcGIS 10 and provided by KDWPT.   A random number 
generator was used to select four quadrats in each sample period.  
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                                                           Otolith section 
A            N=95                                        Reader 2       Matched age observations = 87 
Reader 1 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2   10                       
3   1 11 1                   
4       13                   
5         2                 
6         1 6               
7           1 12             
8               3     1     
9                 3   1     

10                 1 1       
11                     15     
12                     1 10   
13                         1 

 
 

                                                     Whole-view otolith        
B          N=95                                       Reader 2   Matched age observations = 50 
Reader 1 1 2 3 4 5 6 7 8 9 10 11 12 

1                         
2   12   1                 
3     15 2                 
4   1 2 10 1               
5       3 4 4             
6       1 2 5 6 2         
7         2 2 3   1 1 1   
8             3 1 3   1   
9             1     1 2   

10                       1 
11                   1     
12                         

 
 

                                                                   Scale            
C          N=95                                     Reader 2   Matched age observations = 35 
Reader 1 1 2 3 4 5 6 7 8 9 10 11 12 

1                         
2   7 7 1 1               
3   1 4 2 1 2             
4   1 1 14 1               
5     2 4 3 3 3           
6     3 1 5 3 1 1 1       
7       1 4 4 3 1         
8         1 1 2 1         
9               1         

10                 1       
11             2           
12                         

Table 3.—Age frequency tables summarizing paired age estimates by two 
independent readers based on otolith sections (A) whole-view otoliths, (B) and scales (C).  
Tabled values indicate the number of individuals estimated at a specific age by each 
reader.  Shaded cells indicate matched age observations.  Structures were removed from 
95 walleye collected during the 2010 gamete harvest at Cedar Bluff Reservoir.  
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Reader 1 
 

A         N=95                         Whole-view otolith   Matched age observations = 31 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 

O
to

lit
h 

se
ct

io
n 

1              
2  9 1           
3  3 9           
4   5 9          
5   1  1         
6  1 2 2 1 1        
7    2 6 3 2       
8     1 3        
9     1 3        
10     1    1     
11      3 4 5 3     
12      3 3 3  1 1   
13       1       

 
              B         N=95                                          Scale            Matched age observations = 22 

O
to

lit
h 

se
ct

io
n 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
1              
2  7 1 1   1       
3  4 5 1 1 1        
4  3 1 8 2         
5   1   1        
6  1 2 3   1       
7    4 4 3 1 1      
8     3  1       
9     2 1 1       
10     1   1      
11     1 7 6    1   
12    1 1 1 2 4 1  1   
13          1    

 
              

C         N=95                                          Scale      Matched age observations = 35 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

W
ho

le
-v

ie
w

 o
to

lit
h 

1             
2  10 3 1         
3  5 5 4 1 2       
4  1 1 8 3  2      
5   1 4 4 1  1     
6    1 4 5 4 2     
7    1 1 2 3 1  1 1  
8      2 2  1  1  
9     1 1 2      
10        1     
11        1     
12             

Table 4.—Age frequency tables summarizing paired age estimates among structures 
from the first independent reader (A) otolith sections and whole-view otoliths (B) otolith 
sections and scales (C) whole-view otoliths and scales.  Tabled values indicate the 
number of individuals estimated at a specific age using each structure.  Shaded cells 
indicate matched age observations.  Structures were removed from 95 walleye collected 
during the 2010 gamete harvest at Cedar Bluff Reservoir.  
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Reader 2 
A            N=95                            Whole-view otolith    Matched age observations = 36 

O
to

lit
h 

Se
ct

io
n 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
1              
2  11            
3  2 8           
4   5 10          
5   2 1          
6   1 3 2         
7   1 2 2 4 3       
8     1 1 2       
9     1 2 1       
10       1       
11    1 1 2 3 3 3 2 3   
12     2 2 3  1 1 1 1  
13              

 
              

B         N=95                                         Scale       Matched age observations = 20 

O
to

lit
h 

Se
ct

io
n 

 1 2 3 4 5 6 7 8 9 10 11 12 1
3 1              

2  6 4  1         
3  1 6 1 2         
4  1 3 8 1 1 1       
5   2   1        
6   1 3 2         
7    5 3 4        
8    1 1 2        
9    2 2         
10       1       
11   1  4 5 6 1 1     
12    2 2 1 3 2      
13         1     

 
              

C          N=95                                      Scale         Matched age observations = 36 

W
ho

le
-v

ie
w

 o
to

lit
h 

 1 2 3 4 5 6 7 8 9 10 11 12 
1             
2  7 4 1 1        
3  1 9 3 3 1       
4   3 9 2 2 1      
5    3 5  1      
6    3 3 4 1      
7   1 2 3 4 2 1     
8       3      
9    1 1  2      

10      1  1 1    
11      1 1 1 1    
12      1       

Table 5.—Age frequency tables summarizing paired age estimates among structures 
from the second independent reader (A) otolith sections and whole-view otoliths (B) 
otolith sections and scales (C) whole-view otoliths and scales.  Tabled values indicate the 
number of individuals estimated at a specific age using each structure.  Shaded cells 
indicate matched age observations.  Structures were removed from 95 walleye collected 
during the 2010 gamete harvest at Cedar Bluff Reservoir.  
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A Comparison t Degrees of freedom P 

Reader 1    
Otolith section 
Whole-view otolith 
 

-11.98 2 <0.01* 

Otolith section 
Scale 
 

-9.58 2 <0.01* 

Scale 
Whole-view otolith 
 

-3.42 2 <0.01* 

Reader 2    
Otolith section 
Whole-view otolith 
 

-9.58 2 <0.01* 

Otolith section 
Scale 
 

-5.87 2 <0.01* 

Scale 
Whole-view otolith -4.98 2 <0.01* 
 

B Comparison t Degrees of freedom P 
Between Readers    

Otolith section 0.86 2 <0.01 
Whole-view otolith 2.37 2 <0.01* 
Scale 
 

-0.18 2 <0.01 
Reader 1    

Otolith section 
Whole-view otolith 
 

2.62 2 <0.01* 

Otolith section 
Scale 
 

0.38 2 <0.01 

Scale 
Whole-view otolith 
 

0.36 2 <0.01 

Reader 2    
Otolith section 
Whole-view otolith 
 

1.59 2 <0.01 

Otolith section 
Scale 
 

1.10 2 <0.01 

Scale 
Whole-view otolith 0.36 2 <0.01 

Table 6.—(A) Statistical results comparing a line with a slope of one to the slope of 
the best fit regression line derived in age bias plots of pairwise age estimates from two 
independent readers using otolith sections, whole-view otoliths, and scales.  (B) 
Statistical results comparing slopes of male and female best fit regression lines derived in 
age bias plots.  Structures were removed from 95 walleye collected during the 2010 
gamete harvest at Cedar Bluff Reservoir.  (*)Indicates significant difference.
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Table 7.—Coefficients of variation (CV) by age and percent agreement among age estimations generated from two readers.   
Structures were removed from 95 walleye collected during the 2010 gamete harvest at Cedar Bluff Reservoir. 

 
  Mean coefficient of variation within age class 

Comparison 
 

      

Percent 
agreement 

Mean 
CV 

2 3 4 5 6 7 8 9 10 11 12 13 

Between readers               

Otolith section 92% 0.89 0 2.64 0 0 1.30 0.51 3.95 2.5 2.63 0 0.40 0 

Whole-view otolith 53% 5.33 2.38 1.68 4.76 5.21 6.34 6.68 7.06 9.09 9.44 10.1 - - 

Scale 37% 11.36 5.01 5.26 5.88 10.1 10.8 11.5 11.7 12.7 14.2 22.2 - - 

        Reader 1 
Otolith section 
Whole-view otolith 

3% 13.77 3.33 5 5.49 12.5 23.68 13.66 16.48 22.14 19.29 19.07 22.94 30 

Otolith section 
Scale 

23% 17.89 11.72 11.74 10.50 17.05 26.34 15.80 19 22.41 2.22 25.11 25.07 13.04 

Whole-view otolith 
Scale 

37% 10.80 7.18 14.63 10.42 9.23 7.23 11.85 12.62 18.39 11.11 15.79 - - 

        Reader 2 
Otolith section 
Whole-view otolith 

38% 12.09 0 4 4.76 20.37 18.58 13.22 12.67 20.26 17.65 16.48 25.13 8.33 

Otolith section 
Scale 

21% 19.28 11.17 8.42 8.97 19.70 18.59 18.09 21.25 33.52 17.65 28.52 33.46 18.18 

Whole-view otolith 
Scale 

38% 10.89 11.16 10.07 7.78 5.56 8.63 14.0 6.67 19.58 13.79 19.36 33.33 - 
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Figure 1.—Length frequency distributions of walleye sampled with gill nets at approximately two week intervals July to 
November 2010, at Cedar Bluff Reservoir.  Black bars represent captures from 25-mm mesh gill nets and grey bars represent captures 
from 19-mm mesh gill nets.  Ages were estimated from a subsample with whole-view otoliths and extrapolated from an age-length-
key.
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Figure 2.—(A) Mean catch-per-unit-effort (CPUE) and standard errors (vertical bars) 

of age-0 walleye sampled at approximately two week intervals from Cedar Bluff 
Reservoir in 2010.  Black line and squares represent CPUE at standardized sample sites 
and light grey dashed line and diamonds represent CPUE at sample sites chosen at 
random. Bars represent standard errors.  (B) Mean CPUE and standard errors of age-0 
walleye sampled at approximately two week intervals from Cedar Bluff Reservoir in 
2010.  Black line and squares represent CPUE in 25-mm mesh gill nets and light grey 
dashed line and diamonds represent CPUE in 19-mm mesh gill nets.  
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Figure 3.—Age bias plots comparing age estimations by two independent readers 

from otolith sections (A), whole-view otoliths (B), and scales (C) removed from 95 
walleye collected during the 2010 gamete harvest at Cedar Bluff Reservoir.  Grey squares 
represent mean age estimated by reader two for all males estimated a given age by reader 
one.  Black diamonds represent mean age estimated by reader two for all females 
estimated a given age by reader one.  Total numbers of individuals estimated at a specific 
age by each reader are presented in Table 1.  Solid Black lines represent complete 
agreement between readers in age estimates for all structures.  Dashed black lines 
represent best fit regression lines for females and solid grey lines for males.  Coefficients 
of determination (R2) and regression equations reported. 
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Figure 4.—Age (years) frequency distribution of (n=95) walleye sampled during 
gamete harvest at Cedar Bluff Reservoir in the spring of 2010.  Age was estimated by 
reader one using (A) scales, (B) whole-view otoliths, (C) sectioned otoliths.  
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Figure 5.—Age bias plots generated from the first independent reader comparing age 
estimations among structures (A) otolith sections and whole-view otoliths (B) otolith 
sections and scales (C) whole-view otoliths and scales.  Structures were removed from 95 
walleye collected during gamete harvest at Cedar Bluff Reservoir, 2010.  Grey squares 
represent mean estimated age using one structure  for all males estimated a given age 
using the other structure.  Black diamonds represent mean estimated age using one 
structure for all females estimated a given age using the other structure.  Total numbers of 
individuals estimated at a specific age using each structure are presented in Table 2.  
Solid Black lines represent complete agreement in age estimates from both structures.  
Dashed black lines represent best fit regression lines for females and solid grey lines for 
males.  Coefficients of determination (R2) and regression equations are reported.    
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Figure 6.—Age bias plots generated from the second independent reader comparing 

age estimations among structures (A) otolith sections and whole-view otoliths (B) otolith 
sections and scales (C) whole-view otoliths and scales.  Structures were removed from 95 
walleye collected during gamete harvest at Cedar Bluff Reservoir, 2010.  Grey squares 
represent mean estimated age using one structure for all males estimated a given age 
using the other structure.  Black diamonds represent mean estimated age using one 
structure for all females estimated a given age using the other structure.  Total numbers of 
individuals estimated at a specific age using each structure are presented in Table 3.  
Solid Black lines represent complete agreement in age estimates from both structures.  
Dashed black lines represent best fit regression lines for females and solid grey lines for 
males.  Coefficients of determination (R2) and regression equations are reported.  
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Figure 7.—Mean length-at-age and standard errors (vertical bars) using sectioned 

otoliths and total lengths from (n = 210) walleye collected during gamete harvest at Cedar 
Bluff Reservoir in the spring of 2011.  
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Figure 8.—Age (years) frequency distribution of (n=1138) walleye sampled during 

gamete harvest at Cedar Bluff Reservoir in the spring of 2011.  Age was estimated using 
sectioned otoliths from 210 walleye and extrapolated to the entire sample using an age-
length-key.  
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Figure 9.—Linear regression plot of fall age-0 walleye catch-per-unit-effort against 

the estimated relative size of the corresponding year-classes in spring 2011.  Age-0 
walleye were collected in 25-mm mesh gill nets at standardized sample sites.  Relative 
size of the corresponding year-class was estimated from age structure distribution of 
walleye sampled during gamete harvest at Cedar Bluff Reservoir in the spring of 2011.  
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