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ABSTRACT 

 Several fish populations in Kansas are heavily exploited. To obtain insight into 

the response of fish populations to management actions, fisheries biologists must obtain 

as much information as possible with limited resources. To address these challenges, 

biologists often use age and growth information to understand the age structure of the 

populations, estimate recruitment and mortality, and gain insight into environmental and 

genetic factors influencing growth. In addition, age and growth data are used to generate 

yield-per-recruit models, which allow biologists to extrapolate population trends and 

make broad predictions about population responses to different management actions.  

 Cheney and El Dorado reservoirs are in south-central Kansas near urban areas and 

receive heavy use by anglers. Additionally, both reservoirs contain invasive White Perch 

Morone americana and Zebra Mussels Dreissena polymorpha, which adds incentive to 

provide the most informed decisions that minimize the impact of the invasive species but 

maintain user enjoyment. This study was conducted to provide age and growth 

information to assess the status of current fish populations and to model potential 

outcomes from management decisions by using Beverton-Holt yield-per-recruit models. 

  I collected age and growth data from populations of Blue Catfish Ictalurus 

furcatus, Flathead Catfish Pylodictis olivaris, Gizzard Shad Dorosoma cepedianum, 

Largemouth Bass Micropterus salmoides, Walleye Sander vitreus, White Bass Morone 

chrysops, White Crappie Pomoxis annularis, White Perch, and palmetto bass (female 

Striped Bass Morone saxatilis × male White Bass M. chrysops) at both Cheney and El 

Dorado reservoirs from May 23 to November 15, 2013. These data were analyzed and 
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used to create inputs for yield-per-recruit models in Fisheries Analysis and Modeling 

Simulator (FAMS). Results suggested that more restrictive length limits could be justified 

for Walleye at both reservoirs and palmetto bass at Cheney Reservoir; however, unless 

certain populations aid in the control of invasive species, current restrictions on other fish 

populations were acceptable.  
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PREFACE 

This thesis is written in the style of the North American Journal of Fisheries 

Management. 

 

During this project, all fish were collected and handled in accordance with American 

Veterinary Medical Association guidelines. These methods were approved by the 

Institutional Animal Care and Use Committee of Fort Hays State University (IACUC 13-

0014).



 

 1 

INTRODUCTION 

Recreational fishing provides revenue, jobs, and psychological, social, and health 

benefits to a large portion of the American population (Fedler and Ditton 1994; 

Schneidewind 1999). In 2011, more than 33 million individuals 16 years of age and older 

participated in recreational fishing in the United States (USFWS 2012a). These 

individuals spent $41.8 billion pursuing these activities. In Kansas alone, an estimated 

400,000 anglers spent over $200 million on fishing licenses, equipment, and other related 

expenses in 2011 (USFWS 2012b). A portion of these funds is collected indirectly 

through an excise tax on fishing equipment through the Dingell-Johnson Act of 1950 and 

supports federal aid programs, such as the Sportfish Restoration Program (Ballweber and 

Schramm 2010). These funds are indirectly available to state agencies to enhance and 

restore fisheries according to federal guidelines. Another portion of these funds is directly 

available to state natural resource agencies through license sales. These monetary 

resources support fish propagation in hatcheries, stocking programs, habitat 

enhancement, educational programs, research, and the Fish Impoundments and Stream 

Habitats (F.I.S.H.) program. 

By participating in these programs, Kansas Department of Wildlife, Parks and 

Tourism (KDWPT) fisheries biologists seek to provide quality fisheries to promote the 

conservation, use, and appreciation of natural resources. They do this by assessing fish 

populations, recommending regulations, making management decisions, and aiding and 

educating the public. These biologists are responsible for managing fish populations at 24 

federal reservoirs, 40 state lakes, and 235 community lakes, as well as assisting with
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thousands of privately-owned ponds and streams across the state (B. Sowards, KDWPT 

Fisheries Program Specialist, personal communication). While many of the 

impoundments in the state were built for flood control and municipal water supplies, they 

also provide benefits to farmers, hunters, anglers, and other outdoor enthusiasts 

(deNoyelles and Jakubauskas 2008) and can be the focus of recreational partnerships 

between the state agency and the public.  

To properly manage waters for anglers, biologists must understand fish 

populations, fish habitat, and anglers (Willis and Murphy 1996). Biologists regularly 

sample fish populations by using a variety of techniques to characterize fish populations 

based on catch rates, growth rates, mortality, recruitment, condition, and age and size 

structures (Ricker 1975; Willis and Murphy 1996). By characterizing populations, 

biologists can assess changes over time and adjust management strategies, if necessary 

(Allen and Hightower 2010). 

Growth information is especially important to biologists and offers an index of 

environmental and genetic factors that affect populations (Wootton 1990; Devries and 

Frie 1996). The environmental factors include prey availability, water temperature, and 

environmental pollutants (Fry 1971; Quist et al. 2003; Helfman et al. 2009; Quist et al. 

2012). For example, Quist et al. (2003) determined that abundance of Gizzard Shad 

Dorosoma cepedianum had the greatest impact on growth of age-0 and age-1 Walleye 

Sander vitreus in Kansas. Shoup et al. (2007) determined that growth of small Bluegills 

Lepomis macrochirus was most influenced by littoral habitat and pH. Additionally, 

Fishback et al. (2002) concluded that heritability estimates had high genetic correlations 
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when predicting growth and condition for Rainbow Trout Oncorhynchus mykiss. Growth 

information also can be valuable in assessing previous management decisions, mortality 

rates, year-class strength, and recruitment variability (Quist et al. 2012). 

Age and growth of fishes are generally estimated by counting rings on calcified 

hard structures when a direct age assessment (e.g., known ages from marking studies) 

cannot be made (Casselman 1987; Chambers and Miller 1995; Devries and Frie 1996; 

Campana 2001; Buckmeier et al. 2002). Some hard structures include scales (Cross et al. 

1959; Pierce et al. 1996; Johnson 2004), otoliths (Clayton and Maceina 1999; Holley 

2009; Fleming 2012), and pectoral spines (Mayhew 1969; Gray and Collins 1970; 

Goeckler et al. 2003). Otoliths are calcareous structures within the inner ear chambers of 

fish that facilitate hearing and balance, and grow as the fish grows. Though some studies 

have indicated that hard structures do not always grow proportionally with the fish, they 

are still considered to provide valuable growth information and are widely used by 

biologists (Campana 1990; Casselman 1990). 

In all of these hard structures, seasonal bands (annuli) result from differential 

accumulations of bone or calcium carbonate throughout a growing season and are visible 

as alternating light and dark bands that correspond to different growth rates (Chambers 

and Miller 1995; Helfman et al. 2009; Quist et al. 2012). Because fish exhibit 

indeterminate growth, it is theoretically possible to observe a complete growth history of 

a fish based on these structures. Though annuli are generally considered to form yearly in 

North America due to seasonal variations in growing conditions, any factor that decreases 

growth (e.g., spawning conditions) can result in what appears to be an annular mark 
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(Helfman et al. 2009). As a result, validation studies have been conducted to determine 

whether marks are truly annular, or at least whether the marks consistently appear due to 

some seasonal change (Erickson 1983; Hales and Belk 1992; Campana 2001; Buckmeier 

et al. 2002). Though some validation discrepancies occur, most biologists commonly use 

and accept age and growth data determined through use of these hard structures (Quist et 

al. 2012).  

Age and growth information is used to calculate population characteristics, such 

as growth rate, mortality rate, age distribution, and productivity; therefore, managers 

consider it highly valuable in determining management actions (Ricker 1975; Devries 

and Frie 1996; Campana 2001; Koch and Quist 2007; Barada et al. 2011; Schultz et al. 

2012). Accordingly, numerous studies also have evaluated the most accurate and precise 

aging methods (Erickson 1983; Campana 2001; Buckmeier et al. 2002; Isermann et al. 

2003; Barada 2011; Fleming 2012). Scales have historically been used to estimate age, 

because they do not require euthanizing fish and are simple to remove; however, annular 

marks in otoliths are less ambiguous and are generally more accurate and precise 

(Erickson 1983; Maceina and Sammons 2006; Fleming 2012; Quist et al. 2012). Thin-

sections of otoliths often have higher clarity and aging precision than whole-view 

otoliths, making them preferable to use in age and growth studies (Clayton and Maceina 

1999; Fleming 2012; Quist et al. 2012). 

To obtain growth information from hard structures, biologists measure the 

distance from the center of the structure (i.e., focus, core, nucleus) to the outer edge of 

each annulus in a straight line (Devries and Frie 1996; Quist et al. 2012). The distances 
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can then be used to back-calculate length-at-age by using a variety of techniques, 

including the Dahl-Lea or Fraser-Lee methods. The Dahl-Lea back-calculation method 

(also known as the direct-proportion method) determines length-at-age of fish based on a 

linear relationship between body length and hard-structure radius, where the y-intercept is 

at zero (Devries and Frie 1996). Thus, by knowing the length of fish at capture as well as 

the radii of the hard structures, lengths-at-age of fish can be proportionally determined by 

measuring the distance from the origin of the hard structure to each annulus. These 

“back-calculated” lengths are averaged for all ages and provide useful estimates of 

lengths-at-age for a population (Devries and Frie 1996). The Fraser-Lee back-calculation 

method is similar to the Dahl-Lea method; however, the y-intercept value is based on 

either a standard intercept or a biologically determined intercept (Devries and Frie 1996). 

Once back-calculations are complete, these data are used in models that describe 

fish growth in the population as related to length (Allen and Hightower 2010; Quist et al. 

2012). The most common growth model currently used is the von Bertalanffy growth 

model. This model describes the growth of a fish as related to age and assumes that 

growth slows as fish age. The von Bertalanffy growth model is useful for fisheries 

managers who want to assess growth within a population, compare growth between 

populations, or assess the vulnerability of populations to overfishing (Helfman et al. 

2009; Quist et al. 2012). 

Estimating exploitation and recruitment of fish populations is important in 

fisheries management, and can be estimated from age and growth data. Exploitation is the 

number of fish removed from a population due to human activity (e.g., fishing) (Pope et 
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al. 2010; Pine et al. 2012) and is influenced by restrictions, such as length limits and creel 

limits, established by biologists. Recruitment is the number of fish that survive to reach a 

specific size or age, and is usually related to gear selectivity, reproductive age, or 

harvestable size (Willis and Murphy 1996). In the context of fisheries management, 

recruitment generally refers to the number of fish that survive to reach the harvestable 

population (Allen and Hightower 2010). Fisheries managers can then incorporate 

mortality rates, recruitment, and values from the von Bertalanffy growth equation into 

yield-per-recruit models, such as the Beverton-Holt model, which simulate how the yield 

of a fish population will change in response to regulations and exploitation. Yield-per-

recruit models thus describe the potential biomass of a cohort by calculating 

approximately how many fish will recruit and how much those fish weigh on average 

(Allen and Hightower 2010). Yield-per-recruit models contrast with other population 

models (e.g., catch-at-age models), which focus on how population numbers and 

structures will vary in response to harvest rates and require estimates of population size. 

Yield-per-recruit models, thus, illustrate trends in estimated yield for each length limit in 

response to varying exploitation and natural mortality rates.  

Often yield-per-recruit models are used to determine the likelihood of overfishing 

(Allen and Hightower 2010; Quist et al. 2010). Overfishing occurs when too many fish 

are removed from a population, reducing spawning success (i.e., recruitment overfishing) 

or when too many small fish are removed prior to reaching full or optimal growth 

potential (i.e., growth overfishing) (Maceina et al. 1998; Radomski et al. 2001). While 

overfishing in Kansas occurs even in rural reservoirs (Quist et al. 2010), the likelihood 
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that a fishery will be overexploited is related to the distance that a fishery is from a large 

population center (Post et al. 2002, 2008). As the distance from a fishery to an urban area 

decreases, the amount of angling pressure likely increases. This increase in angling 

pressure often leads to overexploitation and lower catch-rates, population conditions that 

decrease angler satisfaction, or both (Post et al. 2008). Despite the drop in angler 

satisfaction, the fishery will continue to be exploited due to its proximity to the urban 

area (Post et al. 2008). As such, management in these areas is especially difficult, and an 

understanding of how each fishery will respond to changes associated with regulations 

and angling effort is essential. 

Another issue that biologists encounter, that relates to human activity, is the 

management, control, and prevention of aquatic invasive species (Johnson et al. 2001; 

Vander Zanden and Olden 2008; Kolar et al. 2010). An invasive species is defined as “an 

alien species whose introduction does or is likely to cause economic or environmental 

harm or harm to human health” by United States Executive Order 13112 (Kolar et al. 

2010). One such invasive species that has spread across regions of the United States, 

including the Midwest, is the White Perch Morone americana. This species has been 

introduced both intentionally and unintentionally, and is highly prolific (Hergenrader and 

Bliss 1971; Hergenrader 1980; Prout et al. 1990). In order to reduce densities of invasive 

White Perch, biologists sometimes use biological control techniques, such as adding a 

new predator to a system or protecting an existing predator from harvest (Gosch 2008; 

Kolar et al. 2010). This technique was implemented by KDWPT after White Perch were 
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introduced into several impoundments in Kansas (J. Koch, KDWPT District Fisheries 

Biologist, personal communication). 

Cheney Reservoir and El Dorado Reservoir are both near urban communities in 

south-central Kansas and are heavily used by anglers and recreationists. Both bodies of 

water contain popular sportfish such as Walleye, palmetto bass (female Striped Bass 

Morone saxatilis × male White Bass M. chrysops), Largemouth Bass Micropterus 

salmoides, and Flathead Catfish Pylodictis olivaris. Additionally, both reservoirs are 

designated as Aquatic Nuisance Species Waters (ANS) by KDWPT due to the presence 

of White Perch and Zebra Mussels Dreissena polymorpha. In an attempt to biologically 

control these species, both reservoirs have high stocking rates of large piscivores and 

special regulations that limit the harvest of these predators in an attempt to maximize 

predation on nuisance species. The intensive public use and special fishery regulations 

mean that these systems need to be well understood so careful and appropriate 

management decisions can be made regarding restrictive regulations and biological 

control mechanisms.  

In summary, both Cheney and El Dorado reservoirs are heavily exploited and 

contain ANS species. Additionally, they have special regulations to control White Perch. 

This study was part of a larger fish characterization project conducted to gain insight into 

target fish populations and potential regulations. The intent of this study was to obtain 

growth information for populations of potential prey species, including Gizzard Shad and 

the invasive White Perch, as well as to characterize, model, and recommend management 

decisions based on growth parameters and yield-per-recruit models for piscivorous sport 
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fish that potentially act as biological controls (Blue Catfish Ictalurus furcatus, Flathead 

Catfish, Largemouth Bass, Walleye, White Bass, White Crappie Pomoxis annularis, and 

palmetto bass). The objectives of this study were to: (1) provide baseline age, growth, 

and size structure information for target species by using otoliths and pectoral spines; (2) 

calculate growth parameters necessary for Beverton-Holt yield-per-recruit models for all 

target species; (3) model and analyze fish populations to evaluate the effectiveness of 

current and potential regulations on yield; and (4) recommend management decisions that 

will maximize yield of predatory sport fish.
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METHODS 

Study sites—Cheney Reservoir impounds the Ninnescah River in south-central Kansas 

within 56 km (35 mi) of both Hutchinson and Wichita, Kansas. Most of the reservoir is in 

Reno County, with portions also in Kingman and Sedgwick counties. The watershed is 

approximately 1,720 km2 (664 mi2), and the major land-cover types are cultivated crops 

and herbaceous rangeland (NLCD Land Cover (2011 Edition), accessed from Kansas 

Data Access & Support Center, http://kansasgis.org/catalog/index.cfm?data_id=2181 

&show_cat=1, accessed September 26, 2014). The reservoir is relatively shallow, 

windswept, and turbid, and it experiences fluctuating inflows and lake levels, with 

conservation pool at an elevation of 433 m (1,422 ft). The reservoir has a surface area of 

3,865 ha (9,550 acres), a maximum depth of 13 m (42 ft), and a mean depth of 5 m (17 ft) 

(J. D. Koch, 2009 progress report and management plan for Cheney Reservoir, Kansas 

Department of Wildlife, Parks and Tourism). White Perch were inadvertently introduced 

into Cheney Reservoir in 1992, and a management plan was implemented in 2003 (J. 

Koch, personal communication). 

 El Dorado Reservoir is in Butler County, in south-central Kansas, on the Walnut 

River, within 64 km (40 mi) of Wichita and only 4 km (3 mi) from El Dorado, Kansas. 

The dam for this reservoir was competed in 1981, and two smaller reservoirs were 

subsequently merged (Kansas Water Office 2012). The reservoir is generally less turbid, 

with more diverse bottom topography than Cheney Reservoir, but it also experiences 

fluctuating lake levels, with conservation pool at an elevation of 408 m (1,339 ft) (Army 

Corps of Engineers, http://www.swt.usace.army.mil/Locations/TulsaDistrictLakes/
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Kansas/ElDoradoLake/PertinentData.aspx, accessed September 26, 2014). The watershed 

is approximately 640 km2 (247 mi2), and herbaceous rangeland is the dominant land-

cover type for the surrounding area (NLCD Land Cover (2011 Edition), accessed from 

Kansas Data Access & Support Center, http://kansasgis.org/catalog/index.cfm?data_id= 

2181&show_cat=1, accessed September 26, 2014). The reservoir has a surface area of 

3,237.5 ha (8,000 acres) and a maximum depth of 18 m (59 ft) (Kansas Biological Survey 

2012). White Perch were discovered in El Dorado Reservoir in 2009 and the same White 

Perch management plan that had been implemented at Cheney Reservoir was employed 

at El Dorado Reservoir in 2010 (C. Johnson, KDWPT District Fisheries Biologist, 

personal communication). 

 During this project, all fish were collected and handled in accordance with 

American Veterinary Medical Association guidelines. These methods were approved by 

the Institutional Animal Care and Use Committee of Fort Hays State University (IACUC 

13-0014). 

Sample methods—Fish from target species were collected from May 23 through 

November 15, 2013. Because this study occurred in coordination with a diet analysis, the 

majority of fish were collected in core panel gill nets set at eight-minute intervals and 

retrieved after 30 minutes of being submerged (i.e., short-sets). These net sizes and panel 

configurations complied with the standard gill nets used by KDWPT (Monofilament, 

eight panels, 80 ft × 6 ft; mesh bar size: 0.75 in, 1.00 in, 1.25 in, 1.50 in, 1.75 in, 2.00 in, 

2.25 in, 2.50 in) for annual fall sampling. Nets were deployed biweekly at each reservoir 

for a period of five days per sample period as weather permitted. Most nets were 
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deployed at dawn or dusk, with the majority of samples collected in the morning. Sample 

locations included standardized sampling stations (KDWPT) augmented by a stratified-

random set of locations throughout the reservoirs. 

In addition to short-set gill nets, supplemental overnight sets also were deployed 

on six occasions. These sets consisted of one 91.44 m (300 ft), 6.35 cm (2.5 in) multi-

filament gill net and the same core-panel gill nets described above. Nets were deployed 

for 8-10 hours at sites chosen in the same manner as above.  

Day and night electrofishing were used as a supplemental sampling method at 

least once per sample period at each reservoir. Day electrofishing samples were collected 

prior to 1200 hrs, while night electrofishing was conducted between sunset and 0100 hrs. 

Sites were selected based on advice from KDWPT biologists, habitat preferences of 

target fish, and equipment capability. Largemouth Bass, White Crappie, and White Bass 

were collected by using high-pulse electrofishing (60 or 120 pulses-per-second) at four to 

six amperes with a Smith-Root Model GPP Electrofisher and a Honda GX160, 5.5 

horsepower motor. Catfishes were collected by using low-pulse (7.5 or 15 pps) 

electrofishing at approximately two amperes with the same equipment. In addition to our 

standard sampling, we used 26 fish donated by anglers, 78 fish from KDWPT standard 

fall sampling, and all mortalities that occurred as part of the diet study. 

Data collection—Target fish were placed into a 0.3- 0.5% salted live-well until all 

nets had been inspected. Fishes were then measured to the nearest millimeter total length 

(TL), and masses were recorded with one of two scales based on the size of the fish. Fish 

were measured to the nearest gram for fish less than 2,000 g and to the nearest 2 g for fish 
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between 2,000 and 5,000 g. Masses were measured by using A&D Weighing waterproof 

scales (Models SK-2000WPZ and SK-5000WPZ). For eleven Flathead Catfish and one 

Blue Catfish over 5,000 g, masses were measured with a Berkley hanging scale with a 

precision to 250 grams. All data, including temporal lake characteristics, were recorded 

on datasheets.  

Sagittal otoliths were collected from scaled fishes and pectoral spines were 

collected from catfishes. Pectoral spines were used because they did not require 

euthanizing the fish, and they were efficiently removed (Devries and Frie 1996; Koch and 

Quist 2007; Barada et al. 2011). This was preferred at Cheney Reservoir, where catch-

rates of catfishes were low and KDWPT biologists were concerned about excessive 

harvest. Otoliths were extracted from five fish per 10-mm length-group for Gizzard Shad, 

White Bass, White Crappie, White Perch, and from any mortalities. To minimize 

mortality, otoliths were extracted from five fish per 20-mm length-group under legal 

harvest limits and from two fish per 20-mm length-group over the legal harvest limit for 

Largemouth Bass, Walleye, palmetto bass, and from all mortalities (J. Goeckler, Fisheries 

Research Biologist, personal communication). Pectoral spines were removed from five 

fish per 20-mm length-group for both Flathead Catfish and Blue Catfish. 

Prior to extracting otoliths, fish were euthanized by having their spinal cord 

severed with diagonal cutters. Otoliths were then extracted by using the “up through the 

gills method” (Secor 1991). Pectoral spines were extracted by holding a relaxed spine 

proximally to the body of the catfish and then twisting downward and in an anterior 

direction, until the spine was dislocated at the articulating process and removed. Most 
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spines came out cleanly; however, scissors occasionally were needed to sever muscle 

tissue. At this time, if possible, muscle tissue for the diet analysis was collected from the 

same wound to reduce the amount of stress inflicted on catfishes. Catfishes were then 

placed in a 3% to 5% salt bath for 10 seconds before being returned to the reservoir.  

Age and growth analysis and model development—Otoliths and spines were 

placed in scale envelopes with a code that corresponded to the information recorded on 

datasheets. Hard structures were cleaned and prepared in the lab. One otolith from each 

fish was embedded in Enviro Tex Lite® (Fields Landing, CA) epoxy by using clear-

silicone, flat embedding molds (models 70900 and 70901; www.emsdiasum.com). 

Otoliths were allowed to cure two to five days to allow the epoxy to fully harden. The 

focus of each embedded otolith was then marked on the epoxy, and transverse cuts were 

made from the posterior end of the otoliths near the focus (Secor 1991, Fleming 2010) by 

using a Buehler® Isomet™ (Lake Bluff, IL) low-speed saw. The anterior halves, which 

included the focus, were then affixed to a labeled, clear, glass slide by using Permatex® 

(Solon, OH) Adhesive Super Glue. Thin sections (300-500 μm) were cut from the affixed 

otolith. All remnants of embedded otoliths were returned to their respective coin 

envelopes. Pectoral spines were sectioned immediately distal to the basal groove (Sneed 

1951, Devries and Frie 1996) and at a section width of 550-610μm.  

Attempts to section the articulating process were inconsistent and, thus, halted. 

Pectoral spine sections were glued to labeled slides after sectioning. Larger spines from 

fish ≥ 205 mm TL, were not embedded in epoxy, because it was more efficient to cut 

them directly. Spines from catfishes < 205 mm TL were embedded in epoxy in 1.5-mL 
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microcentrifuge tubes following methods similar to Koch and Quist (2007) to increase 

the strength and stability of the spine during the cutting process.  

All slides were viewed under a compound light microscope to determine the 

quality of the section before photographing. Otolith and spine sections of poor quality 

were not used in analyses if an unambiguous section could not be cut. Mineral oil was 

applied to sections to increase clarity and digital photographs were taken through an 

Olympus BX51 microscope with an Olympus DP71 camera with Microsuite Basic 

Edition (v2.6 © 2007) software.  

Two independent readers estimated the age of each fish by using the same 

photograph of each sectioned hard structure. When the two primary readers disagreed, the 

image was examined by a third reader. If the age estimate of the third reader disagreed 

with those of the initial readers, the fish was removed from analyses; otherwise the age 

agreed upon by two readers was used. Growth was measured from the focus to the distal 

edge of each annulus and to the edge of each section by using FishBC 3.0 (v3.0.1 ©2007) 

(Figure 1). 

Age-length keys were created with Microsoft Excel ® and FishBC 3.0. Length-

frequency graphs and back-calculations for each species at each reservoir were created 

with Microsoft Excel ® and Fisheries Analysis and Modeling Simulator (FAMS © v1.0) 

software. To back-calculate age-at-length, FAMS uses the Dahl-Lea (direct-proportion) 

method, which uses the following equation: 

   
  

  
   -
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where Li is the back-calculated length of the fish at age i, Lc is the length of the fish at 

capture, Sc is the radius of the otolith or spine section at capture, and Si is the radius of the 

otolith or spine at age i, based on annular marks (Devries and Frie 1996). 

Age-at-length and weight data incorporated into FAMS were used to calculate 

von Bertalanffy growth coefficients, time to recruit to the fishery, and weight-length 

regressions. FAMS uses the von Bertalanffy growth equation to describe fish growth and 

estimate associated length-at-age information as follows: 

                     

where Lt is the length of the fish at age t, L∞ is the asymptotic or theoretical maximum 

length of fish in the population, k is the growth rate or growth coefficient, t is time or age 

in years, t0 is the age when the length of the fish would theoretically equal zero, and e is 

the exponent for natural logarithms (Slipke and Maceina 2010). 

Additionally, FAMS calculated instantaneous rates of fishing mortality and 

natural mortality based on user inputs of conditional fishing mortality (cf) and conditional 

natural mortality (cm) by using catch-curve analysis (Slipke and Maceina 2010). 

Conditional fishing mortality is the theoretical amount of mortality attributed to fishing, 

if natural mortality did not occur. Similarly, conditional natural mortality is the amount of 

natural mortality (e.g., disease, old-age, predation) that would occur in a population if 

fishing did not occur. These inputs were based on exploitation rates of interest (0-90%) 

and cm not exceeding 0.20. Though cm might be higher for some species (e.g., 

approximately 56% for White Bass [Schultz and Robinson 2002]), using levels of 0.20 

was sufficient to examine general trends associated with these models. The modeling 
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option was set to “Model by varying Minimum Length” and other user inputs included 

the number of individuals entering the harvestable population (arbitrarily set at 1,000), 

maximum age of the population (determined by adding one to three years to the oldest 

fish age), and potential minimum length limits of interest, which included the current 

length limit as well as shorter and longer length limits. All of this information was used 

to run Beverton-Holt yield-per-recruit models in FAMS, which uses the Jones (1957, 

cited by Slipke and Maceina 2010) modification as follows: 

   
            

 
                        

where Y is the yield-per-recruit, F is the instantaneous rate of fishing mortality, Nt is the 

number of recruits entering the fishery at time t, Z is the instantaneous rate of total 

mortality, r is the time in years to recruit to the fishery, W∞ is the maximum theoretical 

weight calculated using weight-length regression, K is the growth coefficient from the 

von Bertalanffy growth equation, β is the incomplete Beta function, X is equal to eKr, X1 

is equal to e-k(Maxage – t
0

) (where Maxage is the estimated maximum age of the population), 

P is equal to Z/K, and Q is the slope of the weight-length relation plus one (Slipke and 

Maceina 2010). While FAMS calculated numerous output variables besides yield, the 

variables of interest were yield and exploitation (u), both of which varied based on cm 

and length limit. These results were graphically displayed with SigmaPlot 9 (© 2004 

Systat Software, Inc.).
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RESULTS 

Total catch—Cheney Reservoir:  From June 4 to November 15, 2013, 62 Blue 

Catfish, 40 Flathead Catfish, 643 Gizzard Shad, 6 Largemouth Bass, 144 Walleye, 155 

White Bass, 33 White Crappie, 1,027 White Perch, and 403 palmetto bass were collected. 

Samples sizes were adequate to generate yield-per-recruit models for Flathead Catfish, 

Walleye, White Bass, White Crappie, and palmetto bass. No models were developed for 

Largemouth Bass due to small sample size. Additionally, no models were completed for 

Blue Catfish because FAMS requires at least four age-classes from a species to complete 

a model, and only two age-classes were represented in these samples. 

El Dorado Reservoir:  From May 23 to November 9, 2014, 216 Blue Catfish, 190 

Flathead Catfish, 377 Gizzard Shad, 13 Largemouth Bass, 98 Walleye, 95 White Bass, 

199 White Crappie, 1,235 White Perch, and 276 palmetto bass were collected. Blue 

Catfish, Flathead Catfish, Walleye, White Bass, White Crappie, and palmetto bass were 

used in yield-per-recruit models; however, Largemouth Bass models were not developed 

due to small sample size. 

Size structure and age representation—Cheney Reservoir: Lengths of fish 

collected at Cheney Reservoir varied from 46 mm TL (White Perch) to 989 mm TL 

(Flathead Catfish). Gizzard Shad had the most (10-mm) length-groups represented with 

29; however, White Perch had the most filled (10-mm) length-groups (five per group) 

with 22. Largemouth Bass was the most underrepresented species, with three (20-mm) 

length-groups collected and no length-groups filled. A representative sample for each 
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species by length-group was aged; however, not all length-groups were represented 

equally (Figures 2-10). 

El Dorado Reservoir: Fish at El Dorado Reservoir varied from 79 mm TL (White 

Perch) to 977 mm TL (Flathead Catfish). Flathead catfish had the largest range of lengths 

represented, with hard structures collected from 35 (20-mm) length-groups. Palmetto bass 

had the most filled (20-mm) length-groups, with 18. Largemouth Bass was again the 

most underrepresented species, with seven (20-mm) length-groups represented and only 

one filled length-group (Figures 2-10).  

Age data—Cheney Reservoir: Hard structures were collected from 46 Blue 

Catfish, 39 Flathead Catfish, 131 Gizzard Shad, 6 Largemouth Bass, 109 Walleye, 111 

White Bass, 33 White Crappie, 243 White Perch, and 169 palmetto bass. After removing 

poor-quality sections or structures that exhibited growth anomalies, 42 Blue Catfish, 36 

Flathead Catfish, 105 Gizzard Shad, 5 Largemouth Bass, 101 Walleye, 88 White Bass, 31 

White Crappie, 196 White Perch, and 111 palmetto bass were aged by two independent 

readers.  Agreement among age assignments was lowest for Gizzard Shad (67%) and 

highest for Largemouth Bass (100%). After a third reader assigned ages, overall 

agreement among age estimates was 97.3% (696 of 715). As a result, 19 fish (13 Gizzard 

Shad, 1 White Crappie, 2 White Perch, and 3 Flathead Catfish) were excluded from the 

final analyses (Appendix A). Age-0 individuals were collected from every species except 

Blue Catfish, Flathead Catfish, and Largemouth Bass. The oldest fish collected was an 

age-13 White Perch, though age-12 Blue Catfish and Flathead Catfish also were 

collected. Age-length keys for each species were generated (Appendices B-J). 
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El Dorado Reservoir: Hard structures were collected from 112 Blue Catfish, 109 

Flathead Catfish, 97 Gizzard Shad, 13 Largemouth Bass, 89 Walleye, 81 White Bass, 124 

White Crappie, 145 White Perch, and 147 palmetto bass. After removing poor-quality 

sections or structures that exhibited growth anomalies, 97 Blue Catfish, 90 Flathead 

Catfish, 77 Gizzard Shad, 12 Largemouth Bass, 81 Walleye, 65 White Bass, 111 White 

Crappie, 107 White Perch, and 103 palmetto bass were aged by two independent readers. 

Initial reader agreement was highest for Walleye (100%) and lowest for Flathead Catfish 

(54%). After a third reader completed age assignments, agreement among readers was 

98% (728 of 743). As a result, 15 fish (1 Gizzard Shad, 1 Largemouth Bass, 1 Blue 

Catfish, and 12 Flathead Catfish) were removed from final analyses (Appendix A). Age-

zero individuals were collected for Gizzard Shad, White Bass, and palmetto bass. The 

oldest fish aged were an age-12 Flathead Catfish and age-10 Largemouth Bass and 

Gizzard Shad. Age-length keys for each species were generated (Appendices K-S). 

Yield-per-recruit models—Length, weight, and age summaries were incorporated 

into Fisheries Analysis and Modeling Simulator (v1.0) to obtain population 

characteristics for each species at each reservoir for use in yield-per-recruit models. 

Growth parameters used in yield-per-recruit models are found in Table 1. Due to small 

sample sizes, no yield-per-recruit models were created for Largemouth Bass. Yield-per-

recruit models also were not created for Blue Catfish from Cheney Reservoir because too 

few cohorts were sampled. For White Crappie from Cheney Reservoir and palmetto bass 

from El Dorado Reservoir, all length limits of interest could not be evaluated because the 

theoretical maximum age did not allow for individuals to reach the desired length. 
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Maximum yield for each model varied depending on conditional natural mortality (cm), 

harvest restrictions, and amount of exploitation (u). Yield always decreased with an 

increase in cm for all length limits. In most cases, the most restrictive length limit 

maximized yield when coupled with low cm and high exploitation. At high natural 

mortality rates and at lower exploitation, a more moderate length limit often maximized 

yield. Many simulations exhibited a decrease in yield with an increase in exploitation. 

This outcome indicates that growth overfishing would occur in those populations.  

For Blue Catfish from El Dorado Reservoir, a 907-mm length limit maximized 

yield at high exploitation rates and low conditional mortality (Figure 11). This effect was 

decreased as cm increased, exploitation rates decreased, or both. The 907-mm length 

limit was the only option that did not exhibit growth overfishing. Flathead Catfish at both 

reservoirs exhibited growth overfishing at high exploitation rates regardless of length 

limit, and the most restrictive length limit greatly increased yield at all exploitation rates 

and all levels of cm (Figure 12).  

Walleye at both reservoirs exhibited growth overfishing under all situations 

except with the most restrictive length limit (606 mm) at El Dorado Reservoir (Figure 

13). At high exploitation rates (>80%), the most restrictive length limit produced the 

highest yield, until cm was 0.20 and 0.15 at Cheney and El Dorado reservoirs, 

respectively. At higher conditional natural mortality rates, the 606-mm and 531-mm 

length limits produced similar yields at high exploitation rates in Cheney Reservoir, 

whereas the 531-mm length limit produced higher yields at El Dorado Reservoir under 

the same conditions.  
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A similar pattern was described for White Bass at both reservoirs, where the most 

restrictive length limit (379 mm) produced the highest yields until cm exceeded 0.10 

(Figure 14). Growth overfishing occurred in most situations for White Bass at both 

reservoirs.  

White Crappie exhibited growth overfishing under all length limits, except for a 

354-mm length limit at El Dorado Reservoir; however, this length limit was not able to 

be assessed at Cheney Reservoir (Figure 15). Most White Crappie yields stabilized at 

high cm.  

Palmetto bass exhibited the highest yield under a 606-mm length limit at Cheney 

Reservoir when high exploitation occurred (Figure 16). At El Dorado Reservoir, a 531-

mm length limit maximized yield; however, the 606-mm length limit could not be 

evaluated due to model constraints. Growth overfishing of palmetto bass occurred at all 

length limits assessed except for the 606-mm length limit at Cheney Reservoir.  
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DISCUSSION 

Fisheries biologists work to conserve natural resources so the public can enjoy 

them now and in the future. To accomplish this mission, fisheries biologists must 

maintain balance among enhancing fish populations, maintaining habitat for fish use, and 

maintaining a positive public perception (McMullin and Pert 2010). My project was 

aimed at characterizing target fish populations. One way to characterize fish populations 

is to use models to simplify relatively complex systems. For this project, I analyzed 

growth of nine species of fish and created and evaluated 55 yield-per-recruit models. This 

allowed me to visualize general trends in yield of fish populations due to changes in 

length limits and mortality rates. The purpose of this information was to recommend 

management decisions based on the general predictions of the model. This approach was 

ideal as resources were not available to execute the complex, large-scale population 

surveys required of other population models.  

Total catch, size structure, and age data—As a result of collecting fish over a six-

month field season, the size-range for specific ages increased due to growth over the 

sample period. Despite this, while managers might prefer to have a more precise age-

length-key, the age-at-lengths represented by this study were realistic and can be used 

through the entirety of the year. This assumed that fish are shorter earlier in the year and 

longer later in the year. This assumption might be unrealistic in some situations. For 

example, White Perch at Cheney Reservoir showed signs of stunting; thus, larger 

individuals might be younger and vice versa, but the age-length-keys generated still 

provided baseline age and growth information. 
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Additionally, the length-frequencies were based on fish captured with a variety of 

sampling gears. This should generally be avoided (Quist et al. 2012); however, the intent 

of my study was to determine age from a standard subset of fish populations, regardless 

of catch-methods. Despite the use of multiple gear types, length-frequency information 

for Cheney Reservoir was comparable to data collected by state fisheries biologists in 

previous years (Koch, progress report and management plan). 

 Beamish and McFarlane (1983) and Maceina et al. (2007) recommended that 

validation, as well as reader precision, be analyzed for all age and growth studies. While 

my study analyzed precision by using multiple readers for verification, no true validation 

estimates were made, because there were no known-age individuals in these populations. 

Despite this, there was evidence that supported the assumption that marks were annular 

for one population studied. Palmetto bass were not stocked in El Dorado Reservoir in 

2007 and 2009. Though this information was not known prior to aging fish, no hybrid 

striped bass were aged from these year-classes. Therefore, while not a true validation 

study, this supported the annular mark assumption. Precision was estimated through 

verification between independent readers. Because other studies reported that sectioning 

is necessary for older fish (Hales and Belk 1992; Clayton and Maceina 1999) and 

precision is higher in sectioned otoliths (Fleming 2012), these were the hard structures of 

choice for all fishes except catfishes in my study. Age agreement between readers was 

lowest for Gizzard Shad and catfishes. This could be due to two potential overlapping 

issues: reader inexperience (Barada et al. 2011) and lack of clarity and precision (and 

erosion of the central lumen for pectoral spine sections) (Mayhew 1969; Clayton and 



25 

 

Maceina 1999; Buckmeier et al. 2002). Despite low initial agreements, however, final 

agreements were not below 86% for these species, which was only slightly lower than 

agreement for other species in my study. Additionally, some biologists have concerns 

regarding the true proportionality of otolith growth relative to somatic fish growth 

(Campana 1990; Casselman 1990); however, for biologists in south-central Kansas, the 

high accuracy and precision of age estimates is more important than the potential growth 

estimation bias that might occur (J. Koch, personal communication). 

 Yield-per-recruit models and management implications—Though public opinion 

of restrictive length limits is generally negative, at least initially, given time, many 

anglers accept and even prefer these length limits (Quist et al. 2010; C. Johnson, personal 

communication). These length limits might be warranted if certain length-groups of fish 

are providing biological control of invasive species or if fish consumption is not a major 

goal of anglers compared to the experience of catching large fish. In 2013 and 2014, 

restrictive length limits of 533-mm (21 inches) were enforced for Walleye and palmetto 

bass, in addition to an 889-mm (35-inch) length limit for Blue Catfish (KDWPT 

regulation 115-25-14). My yield-per-recruit models evaluated the current length limit 

alongside less-restrictive and more-restrictive limits when possible. In 42 of 55 yield-per-

recruit models, the most restrictive length limit increased yield compared to the next most 

restrictive limit. While these models support more restrictive limits they did not 

incorporate changes in exploitation due to different regulations, fish diet, or angler 

motives.  



26 

 

At Cheney Reservoir, growth of Blue Catfish appeared rapid compared to that of 

El Dorado Reservoir; however, catch rates were lower. Because there was such rapid 

growth and the population was young, the 889-mm length limit should be maintained as 

long as Blue Catfish maintain a consistent growth rate. Models suggested that a 

restrictive length limit (~35 inches) at both reservoirs is warranted if exploitation rates 

are expected to be high; however, at El Dorado Reservoir few fish have reached this 

limit, and reproduction was high (C. Johnson, personal communication). Therefore, 

lowering the length limit to 757 mm might be warranted to decrease competition between 

cohorts and increase growth potential, as long as exploitation rates are not expected to 

exceed 40% or if large Blue Catfish (e.g., 757-907 mm) are not major predators of White 

Perch. 

 Managers do not generally restrict the length of legal Flathead Catfish harvest in 

Kansas reservoirs. Based on the yield-per-recruit models, if exploitation was high, even 

under conditional natural mortality rates of 0.20, a length limit might provide much 

higher yield. At low exploitation rates (< 10%) and cm ≥ 0.15, a length limit would not be 

warranted because yields are comparable among all length limits analyzed. To understand 

this more thoroughly, if Flathead Catfish management is of interest, studies should be 

conducted to determine fishing and natural mortality rates.  

 Yield-per-recruit models for Walleye indicated a length limit of 606 mm 

produced much higher yields at low conditional natural mortality compared to less 

restrictive length limits. This also was the only option that minimized growth overfishing 

at both reservoirs in all situations. Quist et al. (2010) estimated that exploitation of 
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Walleye at Glen Elder Reservoir is 68%, which is likely comparable to other reservoirs in 

Kansas (J. Koch, personal communication). With such high levels of exploitation, 

increasing the length limit to 606 mm would provide a higher yield at both reservoirs. An 

alternative not assessed for this project would be to enforce seasonal length limits, 

restricting fish harvest more from April to June when exploitation is highest (Quist et al. 

2010; J. Koch, personal communication). 

 Like Flathead Catfish, length of harvestable White Bass is generally not regulated 

in Kansas. Based on previous studies, natural mortality was most likely higher than the 

maximum rate analyzed (0.20), while exploitation is likely less than 40% (Schultz and 

Robinson 2002). With a higher cm, it is likely that yield would continue to decrease. 

Because of this lack of exploitation and yields that equalize with higher cm, a length limit 

is not warranted for White Bass at either reservoir. 

 Though restrictions on crappies have historically been minimal, using length 

limits to increase mean size of White Crappie that are not likely to stunt has become more 

popular in recent decades (Allen and Miranda 1995). Based on high mortality rates and 

moderate exploitation estimated by Mosher (2009), restricting size of White Crappie 

harvested at these two reservoirs is probably not justified unless they are aiding in control 

White Perch. 

 Length restrictions of palmetto bass and Walleye at both reservoirs increased as 

part of the implementation of White Perch management plans. Despite these restrictive 

regulations, exploitation of palmetto bass at these reservoirs is thought to be high (J. 

Koch, personal communication). Based on yield-per-recruit models, a 606-mm length 
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limit would increase yield at Cheney Reservoir if natural mortality rates are low. Also, 

this was the only option that minimized growth overfishing. At the highest cm modeled, 

yields were stabilized at high exploitation rates. At El Dorado Reservoir, a 531-mm 

length limit increased yield at all conditional natural mortality rates, but again, yields 

stabilized as cm increased. Thus, maintaining the current length limit is appropriate. 

 In summary, this investigation was conducted in conjunction with a diet analysis 

and in coordination with local biologists in an effort to conserve both human and natural 

resources. Accordingly, fewer fish were collected than would be expected in separate 

investigations, which reduced the potential for public discontent. Therefore, even though 

using fish sampled from a narrow field season is preferred in age and growth studies, it 

was a necessary compromise to be more efficient and increase public awareness. Despite 

the compromise, quality data were still obtained.  

The main objective of this study was to characterize fish populations in order to 

recommend management decisions; however, managers also should consider public 

opinion when making final decisions.  In some instances anglers might be opposed to 

harvest restrictions (Isermann and Paukert 2010), which could alter exploitation rates and 

cooperation. Alternatively, anglers might have a positive attitude toward length limits and 

the intent of the agency. Some anglers expressed gratitude while my research was being 

conducted, stating that they enjoyed the more restrictive length limits because their goals 

were to catch large fish and enjoy the experience. They stated that consumption of those 

fish was less important. These positive public interactions strengthen the idea that to 

make the most appropriate decisions, fisheries biologists must have knowledge of all 
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aspects of fisheries management. The more educated the public is of the goals of the 

managing agency, the more ability biologists have to make data-driven management 

decisions that will also satisfy public desires.  

Based on model results, lowering the length limit for Blue Catfish at El Dorado 

Reservoir might be justified, and more restrictive length limits could be justified for 

Flathead Catfish, Walleye, and palmetto bass in order to increase potential yield. Other 

models indicated that alternate restrictions were not justified. All of the models 

represented hypotheses illustrating how a population of fish might respond to varying 

length limits and mortality rates. While they did not provide exact predictions, they do 

allow managers to view general trends with regard to yield and susceptibility to 

overfishing. These data, when coupled with knowledge of the system, can provide 

valuable information to help managers to assess whether or not to enact length 

restrictions on the harvest of fish populations.
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Table 1.—Tabulated growth parameters used to create yield-per-recruit models in FAMS for (A) Cheney Reservoir and (B) 
El Dorado Reservoir. N0 was the number of initial individuals, b and a were regression coefficients for the weight:length 
and the von Bertalanffy growth equations, maximum age was the theoretical maximum age of the fish population, L∞  was 
the theoretical maximum length of fish in the population, K was the growth rate, t0 was the theoretical age when fish had a 
length of 0, and W∞  was the weight infinity computed by FAMS.  Minimum TL (mm) inputs included a start value, end 
value, and a “step-by” value that was used to model length limits incrementally between the start and end values. 
Conditional fishing mortality (cf) started at 0 and ended at 0.9, stepping by 0.1 for all models. Similarly, conditional natural 
mortality (cm) started at 0 and ended at 0.2 for all models, stepping by 0.05. 

 

Species N0 b a Max 
Age L∞ (mm) K t0 W∞ (g) 

Min TL 
(mm) 
start 

Min 
TL end 

Min 
TL step 

by 
Flathead Catfish 1000 3.348 -5.884 15 1258.406 0.094 -1.233 16195.523 0 600 200 
Walleye 1000 3.318 -5.857 8 850.758 0.138 -2.842 7313.0146 381 610 75 
White Bass 1000 2.427 -3.499 7 403.978 0.586 -0.562 670.85733 254 381 25 
White Crappie 1000 3.167 -5.276 8 357.364 0.478 -0.922 645.21121 254 330 25 
Palmetto bass 1000 3.028 -5.017 8 763.737 0.17 -1.792 5158.8621 381 610 75 

 

Species N0 b a Max 
Age L∞ (mm) K t0 W∞ (g) 

Min TL 
(mm) 
start 

Min 
TL end 

Min 
TL step 

by 
Blue Catfish 1000 3.305 -5.858 15 1142.479 0.107 -0.364 17708.769 457 907 150 
Flathead Catfish 1000 3.147 -5.369 15 2251.403 0.029 -1.636 151764.55 0 600 200 
Walleye 1000 3.266 -5.758 8 653.115 0.355 -0.529 2727.4463 381 610 75 
White Bass 1000 2.991 -4.926 7 548.298 0.127 -3.552 1846.7105 254 381 25 
White Crappie 1000 3.246 -5.468 9 377.838 0.304 -0.614 790.55863 254 354 25 
Palmetto bass 1000 2.977 -4.914 8 604.474 0.322 -0.805 2323.5990 381 533 75 

A 

B 
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Figure 1.—Image of a transverse section taken from a Walleye otolith with growth 
measurements marked at the distal edge of each annulus. Because this fish was collected 
in November, the edge of the section is growth that occurred since the formation of the 
last annulus, making this fish six years old. 
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Figure 2.— Length-frequency graphs for Blue Catfish Ictalurus furcatus sampled at (A) 
Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 20-mm 
length-group denoted by the lightly shaded bars and unaged fish in each length-group 
denoted by black bars. N is the total number of Blue Catfish collected and NAged is the 
total number of Blue Catfish aged. 
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Figure 3.— Length-frequency graphs for Flathead Catfish Pylodictis olivaris sampled at 
(A) Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 20-
mm length-group denoted by the lightly shaded bars and unaged fish in each length-
group denoted by black bars. N is the total number of Flathead Catfish collected and 
NAged is the total number of Flathead Catfish aged. 
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Figure 4.— Length-frequency graphs for Gizzard Shad Dorosoma cepedianum sampled 
at (A) Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 
10-mm length-group denoted by the lightly shaded bars and unaged fish in each length-
group denoted by black bars. N is the total number of Gizzard Shad collected and NAged is 
the total number of Gizzard Shad aged. 
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Figure 5.— Length-frequency graphs for Largemouth Bass Micropterus salmoides 
sampled at (A) Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish 
in each 20-mm length-group denoted by the lightly shaded bars and unaged fish in each 
length-group denoted by black bars. N is the total number of Largemouth Bass collected 
and NAged is the total number of Largemouth Bass aged. 
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Figure 6.— Length-frequency graphs for Walleye Sander vitreus  sampled at (A) Cheney 
Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 20-mm length-
group denoted by the lightly shaded bars and unaged fish in each length-group denoted 
by black bars. N is the total number of Walleye collected and NAged is the total number of 
Walleye aged. 
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Figure 7.— Length-frequency graphs for White Bass Morone chrysops sampled at (A) 
Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 10-mm 
length-group denoted by the lightly shaded bars and unaged fish in each length-group 
denoted by black bars. N is the total number of White Bass collected and NAged is the total 
number of White Bass aged.  
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Figure 8.— Length-frequency graphs for White Crappie Pomoxis annularis sampled at 
(A) Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 10-
mm length-group denoted by the lightly shaded bars and unaged fish in each length-
group denoted by black bars. N is the total number of White Crappie collected and NAged 
is the total number of White Crappie aged. 
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Figure 9.— Length-frequency graphs for White Perch Morone americana sampled at (A) 
Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish in each 10-mm 
length-group denoted by the lightly shaded bars and unaged fish in each length-group 
denoted by black bars. N is the total number of White Perch collected and NAged is the 
total number of White Perch aged. 
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Figure 10.— Length-frequency graphs for palmetto bass Morone saxatilis × M. chrysops 
sampled at (A) Cheney Reservoir and (B) El Dorado Reservoir in Kansas, with aged fish 
in each 20-mm length-group denoted by the lightly shaded bars and unaged fish in each 
length-group denoted by black bars. N is the total number of palmetto bass collected and 
NAged is the total number of palmetto bass aged.  
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Figure 11.— Yield-per-recruit model for Blue Catfish Ictalurus furcatus at El Dorado 
Reservoir in Kansas in response to five potential length limits, where cm represents 
conditional natural mortality. Yield in kilograms is displayed on the Y-axis, while percent 
exploitation is on the X-axis. 
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Figure 12.— Yield-per-recruit models for Flathead Catfish Pylodictis olivaris at (A) 
Cheney and (B) El Dorado reservoirs in Kansas in response to four potential length 
limits, where cm represents conditional natural mortality. Yield in kilograms is displayed 
on the Y-axis, while percent exploitation is on the X-axis. 
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Figure 13.— Yield-per-recruit models for Walleye Sander vitreus at (A) Cheney and (B) 
El Dorado reservoirs in Kansas in response to four potential length limits, where cm 
represents conditional natural mortality. Yield in kilograms is displayed on the Y-axis, 
while percent exploitation is on the X-axis. 
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Figure 14.— Yield-per-recruit models for White Bass Morone chrysops at (A) Cheney 
and (B) El Dorado reservoirs in Kansas in response to six potential length limits, where 
cm represents conditional natural mortality. Yield in kilograms is displayed on the Y-
axis, while percent exploitation is on the X-axis. 
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Figure 15.— Yield-per-recruit models for White Crappie Pomoxis annularis at (A) 
Cheney and (B) El Dorado reservoirs in Kansas in response to four (Cheney Reservoir) or 
five (El Dorado Reservori) potential length limits, where cm represents conditional 
natural mortality. Yield in kilograms is displayed on the Y-axis, while percent 
exploitation is on the X-axis. 
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Figure 16.— Yield-per-recruit models for palmetto bass Morone saxatilis × M. chrysops 
at (A) Cheney and (B) El Dorado reservoirs in Kansas in response to four (Cheney 
Reservoir) or three (El Dorado Reservoir) potential length limits, where cm represents 
conditional natural mortality. Yield in kilograms is displayed on the Y-axis, while percent 
exploitation is on the X-axis. 
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Appendix A—Agreement of ages between readers, where N = total number of fish aged, 
FI = number of fish aged that were initially agreed upon, and FF = number of fish agreed 
upon after a third reader aged discrepancies. Reader agreement for fish collected at (A) 
Cheney Reservoir and (B) El Dorado Reservoir in Kansas. 
 

A  Species FI N 
Initial Percent 

Agreement FF N Final Percent 
Agreement 

Blue Catfish 41 42 97.62% 42 42 100.00% 
Flathead Catfish 27 36 75.00% 33 36 91.67% 
Gizzard Shad 70 105 66.67% 92 105 87.62% 
Largemouth Bass 5 5 100.00% 5 5 100.00% 
Walleye 85 101 84.16% 101 101 100.00% 
White Bass 87 88 98.86% 88 88 100.00% 
White Crappie 28 31 90.32% 30 31 96.77% 
White Perch 192 196 97.96% 194 196 98.98% 
Palmetto bass 109 111 98.20% 111 111 100.00% 
Overall 644 715 90.07% 696 715 97.34% 
 
 

B  Species FI N 
Initial Percent 

Agreement FF N 
Final Percent 
Agreement 

Blue Catfish 62 97 63.92% 96 97 98.97% 
Flathead Catfish 49 90 54.44% 78 90 86.67% 
Gizzard Shad 62 77 80.52% 76 77 98.70% 
Largemouth Bass 11 12 91.67% 11 12 91.67% 
Walleye 81 81 100.00% 81 81 100.00% 
White Bass 61 65 93.85% 65 65 100.00% 
White Crappie 109 111 98.20% 111 111 100.00% 
White Perch 105 107 98.13% 107 107 100.00% 
Palmetto bass 99 103 96.12% 103 103 100.00% 
Overall 639 743 86.00% 728 743 97.98% 
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Appendix B— Age-length key modified from Devries and Frie (1996) for Blue Catfish Ictalurus furcatus aged at Cheney 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-
group (mm) N(Age) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

Age 11 
(%) 

Age 12 
(%) 

340 3(2) 100.0 
          360 5(2) 100.0 
          380 5(2) 100.0 
          400 5(2) 100.0 
          420 5(2) 100.0 
          440 7(2) 100.0 
          460 6(2) 100.0 
          480 4(2) 100.0 
          500 1(2) 100.0 
          520 

            540 
            560 
            580 
            600 
            620 
            640 
            660 
            680 
            700 
            720 
            740 1(12) 

          
100.0 

Total [42] 97.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.38 



 

 
 

59 

Appendix C— Age-length key modified from Devries and Frie (1996) for Flathead Catfish Pylodictis olivaris aged at Cheney 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

Age 11 
(%) 

Age 12 
(%) 

160 1(1) 100.0 
           180 

             200 1(1) 1(2) 50.0 50.0 
          220 1(1) 100.0 

           240 
             260 1(3) 

  
100.0 

         280 1(2) 
 

100.0 
          300 2(2) 

 
100.0 

          320 1(1) 1(2) 50.0 50.0 
          340 1(2) 

 
100.0 

          360 
             380 1(3) 

  
100.0 

         400 
             420 1(3) 

  
100.0 

         440 2(4) 
   

100.0 
        460 1(2) 1(4) 

 
50.0 

 
50.0 

        480 1(8) 
       

100.0 
    500 1(3) 1(7) 

  
50.0 

   
50.0 

     520 1(5) 
    

100.0 
       540 1(4) 

   
100.0 

        560 1(4) 1(6) 
   

50.0 
 

50.0 
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Appendix C continued. 
Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

Age 11 
(%) 

Age 12 
(%) 

580 
             600 
             620 
             640 
             660 
             680 1(6) 

     
100.0 

      700 
             720 
             740 
             760 1(6) 

     
100.0 

      780 1(8) 1(11) 
       

50.0 
  

50.0 
 800 1(10) 

         
100.0 

  820 1(12) 
           

100.0 
840 

             860 
             880 
             900 
             920 1(7) 

      
100.0 

     940 1(11) 
          

100.0 
 960 

             980 1(12) 
           

100.0 
Total [33] 12.1 21.2 12.1 15.2 3.0 9.1 6.1 6.1 0.0 3.0 6.1 6.1 
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Appendix D—Age-length key modified from Devries and Frie (1996) for Gizzard Shad Dorosoma cepedianum aged at Cheney 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-
group 
(mm) N(Age) 

Age 0 
(%) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

100 1(1) 
 

100.0 
         110 

            120 3(0) 1(1) 75.0 25.0 
         130 2(0) 100.0 

          140 3(0) 2(1) 60.0 40.0 
         150 2(1) 

 
100.0 

         160 
            170 
            180 
            190 1(2) 

  
100.0 

        200 5(2) 
  

100.0 
        210 6(2) 

  
100.0 

        220 1(1) 4(2) 
 

20.0 80.0 
        230 6(2) 

  
100.0 

        240 4(2) 
  

100.0 
        250 6(2) 

  
100.0 

        260 5(2) 
  

100.0 
        270 4(2) 

  
100.0 

        280 3(2) 
  

100.0 
        290 3(2) 

  
100.0 

        300 4(2) 
  

100.0 
        310 6(2) 

  
100.0 
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Appendix D continued. 
Length-
group 
(mm) N(Age) 

Age 0 
(%) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

320 1(2) 
  

100.0 
        330 1(2) 

  
100.0 

        340 
            350 
            360 1(6) 1(9) 

      
50.0 

  
50.0 

 370 1(6) 3(7) 
      

25.0 75.0 
   380 1(6) 1(8) 1(9) 

     
33.3 

 
33.3 33.3 

 390 1(6) 1(8) 3(9) 1(10) 
     

16.7 
 

16.7 50.0 16.7 
400 1(8) 

        
100.0 

  410 
            420 
            430 1(7) 

       
100.0 

   440 1(7) 
       

100.0 
   Total [92] 8.7 7.6 64.1 0.0 0.0 0.0 4.3 5.4 3.3 5.4 1.1 
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Appendix E—Age-length key modified from Devries and Frie (1996) for Largemouth 
Bass Micropterus salmoides aged at Cheney Reservoir in Kansas. N = the number of 
individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent 
percentages of the entire aged sample. Total number of aged individuals is in brackets. 

Length-group 
(mm) N(Age) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) 
180 1(1) 100.0 

    200 
      220 
      240 
      260 
      280 
      300 
      320 1(2) 

 
100.0 

   340 
      360 1(4) 2(5) 

   
33.3 66.7 

Total [5] 100.0 100.0 0 33.3 66.7 
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Appendix F—Age-length key modified from Devries and Frie (1996) for Walleye Sander vitreus aged at Cheney Reservoir in 
Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total number of 
individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. Total 
number of aged individuals is in brackets. 

Length-group (mm) N(Aged) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Ag 5 (%) Age 6 (%) 
240 1(0) 100.0 

      260 
        280 1(0) 3(1) 25.0 75.0 

     300 1(2) 
  

100.0 
    320 

        340 
        360 1(1) 

 
100.0 

     380 3(1) 
 

100.0 
     400 1(1) 1(2) 2(3) 

 
25.0 25.0 50.0 

   420 1(2) 9(3) 2(4) 
  

8.3 75.0 16.7 
  440 1 (2) 7(3) 

  
12.5 87.5 

   460 6(3) 1(4) 2(5) 
   

66.7 11.1 22.2 
 480 1(2) 5(3) 2(4) 5(5) 

  
7.7 38.5 15.4 38.5 

 500 3(3) 2(4) 4(5) 
   

33.3 22.2 44.4 
 520 5(3) 4(5) 

   
55.6 

 
44.4 

 540 1(3) 2(4) 4(5) 1(6) 
   

12.5 25.0 50.0 12.5 
560 2(3) 2(4) 1(5) 

   
40.0 40.0 20.0 

 580 1(4) 5(5) 
    

16.7 83.3 
 600 2(5) 1(6) 

     
66.7 33.3 

620 1(5) 3(6) 
     

25.0 75.0 
640 

        660 1(5) 
     

100.0 
 Total [101] 2.0 7.9 5.0 39.6 11.9 28.7 5.0 

  



    

 
 

65 

Appendix G—Age-length key modified from Devries and Frie (1996) for White Bass Morone chrysops aged at Cheney Reservoir 
in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total number of 
individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. Total number 
of aged individuals is in brackets. Broken line represents a break in size classes where no individuals were aged. 

Length-group (mm) N(Age) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) 
100 1(0) 100.0 

      110 
        220 
        230 1(1) 

 
100.0 

     240 4(1) 
 

100.0 
     250 

        260 1(1) 
 

100.0 
     270 1(1) 3(2) 

 
25.0 75.0 

    280 1(1) 5(2) 
 

16.7 83.3 
    290 6(2) 

  
100.0 

    300 1(1) 7(2) 1(3) 
 

11.1 77.8 11.1 
   310 1(2) 5(3) 

  
16.7 83.3 

   320 5(3) 
   

100.0 
   330 8(3) 

   
100.0 

   340 1(2) 5(3) 
  

16.7 83.3 
   350 2(2) 2(3) 1(4) 1(5) 

  
33.3 33.3 16.7 16.7 

 360 5(3) 1(4) 
   

83.3 16.7 
  370 4(3) 1(5) 1(6) 

   
66.7 

 
16.7 16.7 

380 3(3) 2(4) 
   

60.0 40.0 
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Appendix G continued. 
Length-group (mm) N(Age) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) 

390 1(3) 2(4) 2(5) 1(6) 
   

16.7 33.3 33.3 16.7 
400 

        410 1(6) 
      

100.0 
420 

        430 1(6) 
      

100.0 
Total [88] 1.1 10.2 28.4 44.3 6.8 4.5 4.5 
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Appendix H—Age-length key modified from Devries and Frie (1996) for White Crappie Pomoxis annularis aged at Cheney 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-group (mm) N(Age) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) 
110 3(0) 100.0 

     120 
       130 
       140 
       150 
       160 
       170 
       180 
       190 
       200 
       210 
       220 1(2) 

  
100.0 

   230 
       240 1(1) 2(2) 

 
33.3 66.7 

   250 4(2) 
  

100.0 
   260 1(2) 2(3) 

  
33.3 66.7 

  270 4(2) 1(3) 
  

80.0 20.0 
  280 1(2) 3(3) 

  
25.0 75.0 

  290 
       300 1(4) 

    
100.0 

 310 
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Appendix H continued. 
Length-group (mm) N(Age) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) 

320 4(4) 
    

100.0 
 330 1(4) 

    
100.0 

 340 
       350 1(5) 

     
100.0 

Total [30] 10.0 3.3 43.3 20.0 20.0 3.3 
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Appendix I—Age-length key modified from Devries and Frie (1996) for White Perch 
Morone americana aged at Cheney Reservoir in Kansas. N = the number of individuals 
in each age-class. Values within the table represent percentages of the total number of 
individuals aged for each age-class, and the values across the bottom represent 
percentages of the entire aged sample. Total number of aged individuals is in brackets. 
Extended on next page. 
Length-
group 
(mm) N(Age) 

Age 0 
(%) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

40 2(0) 100.0 
      50 6(0) 100.0 
      60 3(0) 100.0 
      70 5(0) 100.0 
      80 3(0) 100.0 
      90 

        100 
        110 9(1) 

 
100.0 

     120 8(1) 1(2) 
 

88.9 11.1 
    130 10(2) 

  
100.0 

    140 15(2) 
  

100.0 
    150 9(2) 

  
100.0 

    160 9(2) 
  

100.0 
    170 8(2) 

  
100.0 

    180 5(2) 
  

100.0 
    190 8(2) 

  
100.0 

    200 9(2) 
  

100.0 
    210 1(2) 5(3) 2(4) 1(5) 

  
11.1 55.6 22.2 11.1 

 220 1(2) 3(3) 2(4) 1(5) 
  

14.3 42.9 28.6 14.3 
 230 1(3) 5(4) 4(5) 

   
10.0 50.0 40.0 

 240 2(3) 5(4) 3(5) 
   

20.0 50.0 30.0 
 250 1(2) 2(3) 2(4) 2(5) 1(6) 

  
12.5 25.0 25.0 25.0 12.5 

260 1(4) 1(5) 5(6) 1(7) 1(8) 1(10) 
    

10.0 10.0 50.0 
270 1(5) 3(6) 2(7) 1(8) 1(10) 

     
12.5 37.5 

280 1(5) 1(7) 6(8) 1(9) 
     

11.1 
 290 2(7) 3(8) 1(10) 1(11) 

       300 1(7) 1(8) 2(10) 1(11) 
       310 1(13) 
       Total [194] 9.8 8.8 39.7 6.7 8.8 7.2 4.6 
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Appendix I continued. 
Length-
group 
(mm) N(Age) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 
10 

(%) 

Age 
11 

(%) 

Age 
12 

(%) 

Age 
13 

(%) 
40 2(0) 

       50 6(0) 
       60 3(0) 
       70 5(0) 
       80 3(0) 
       90 

        100 
        110 9(1) 

       120 8(1) 1(2) 
       130 10(2) 
       140 15(2) 
       150 9(2) 
       160 9(2) 
       170 8(2) 
       180 5(2) 
       190 8(2) 
       200 9(2) 
       210 1(2) 5(3) 2(4) 1(5) 
       220 1(2) 3(3) 2(4) 1(5) 
       230 1(3) 5(4) 4(5) 
       240 2(3) 5(4) 3(5) 
       250 1(2) 2(3) 2(4) 2(5) 1(6) 
       260 1(4) 1(5) 5(6) 1(7) 1(8) 1(10) 10.0 10.0 

 
10.0 

   270 1(5) 3(6) 2(7) 1(8) 1(10) 25.0 12.5 
 

12.5 
   280 1(5) 1(7) 6(8) 1(9) 11.1 66.7 11.1 

    290 2(7) 3(8) 1(10) 1(11) 28.6 42.9 
 

14.3 14.3 
  300 1(7) 1(8) 2(10) 1(11) 20.0 20.0 

 
40.0 20.0 

  310 1(13) 
      

100.0 
Total [194] 3.6 6.2 0.5 2.6 1.0 0.0 0.5 
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Appendix J—Age-length key modified from Devries and Frie (1996) for palmetto bass Morone saxatilis × M. chrysops aged at 
Cheney Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the 
total number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged 
sample. Total number of aged individuals is in brackets. 

Length-group (mm) N(Age) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) 
180 1(0) 100.0 

      200 2(0) 100.0 
      220 2(0) 2(1) 50.0 50.0 

     240 2(1) 
 

100.0 
     260 

        280 2(1) 
 

100.0 
     300 1(1) 1(2) 

 
50.0 50.0 

    320 3(3) 
   

100.0 
   340 5(2) 

  
100.0 

    360 9(2) 1(3) 
  

90.0 10.0 
   380 8(2) 1(3) 1(5) 

  
80.0 10.0 

 
10.0 

 400 1(2) 11(3) 
  

8.3 91.7 
   420 1(2) 11(3) 

  
8.3 91.7 

   440 1(2) 6(3) 5(4) 
  

8.3 50.0 41.7 
  460 5(3) 4(4) 

   
55.6 44.4 

  480 4(3) 2(4) 
   

66.7 33.3 
  500 2(3) 3(4) 3(5) 

   
25.0 37.5 37.5 

 520 5(5) 1(6) 
     

83.3 16.7 
540 1(6) 

      
100.0 

560 1(6) 
      

100.0 
580 1(5) 1(6) 

     
50.0 50.0 

600 1(5) 
     

100.0 
 Total [111] 4.5 6.3 23.4 39.6 12.6 9.9 3.6 
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Appendix K—Age-length key modified from Devries and Frie (1996) for Blue Catfish Ictalurus furcatus aged at El Dorado 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

120 1(1) 100.0 
        140 1(1) 100.0 
        160 2(1) 100.0 
        180 1(1) 100.0 
        200 2(1) 3(2) 1(3) 33.3 50.0 16.7 

      220 4(2) 1(3) 
 

80.0 20.0 
      240 3(2) 1(3) 

 
75.0 25.0 

      260 2(2) 2(3) 1(4) 
 

40.0 40.0 20.0 
     280 1(2) 2(3) 

 
33.3 66.7 

      300 4(3) 1(4) 
  

80.0 20.0 
     320 3(3) 2(4) 

  
60.0 40.0 

     340 1(3) 1(4) 
  

50.0 50.0 
     360 1(3) 2(4) 1(5) 

  
25.0 50.0 25.0 

    380 1(3) 1(4) 1(5) 
  

33.3 33.3 33.3 
    400 5(4) 1(5) 

   
83.3 16.7 

    420 1(4) 1(5) 
   

50.0 50.0 
    440 1(4) 

   
100.0 

     460 1(3) 1(4) 1(5) 
  

33.3 33.3 33.3 
    480 2(4) 1(5) 

   
66.7 33.3 

    500 3(4) 2(5) 
   

60.0 40.0 
    520 1(5) 

    
100.0 

    540 3(4) 1(5) 1(6) 1(8) 
   

50.0 16.7 16.7 
 

16.7 
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Appendix K continued. 
Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

560 1(5) 1(6) 1(8) 
    

33.3 33.3 
 

33.3 
 580 1(6) 

     
100.0 

   600 
          620 1(6) 1(7) 

     
50.0 50.0 

  640 1(6) 1(8) 
     

50.0 
 

50.0 
 660 1(5) 1(6) 1(7) 1(8) 

    
25.0 25.0 25.0 25.0 

 680 1(8) 1(9) 
       

50.0 50.0 
700 2(8) 

       
100.0 

 720 2(9) 
        

100.0 
Total [96] 7.3 13.5 18.8 29.2 12.5 6.3 2.1 7.3 3.1 
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Appendix L—Age-length key modified from Devries and Frie (1996) for Flathead Catfish Pylodictis olivaris aged at El Dorado 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 
Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 
10 
(%) 

Age 
11 
(%) 

Age 
12 
(%) 

100 1(1) 100.0 
           120 1(1) 100.0 
           140 1(2) 

 
100.0 

          160 1(1) 3(2) 25.0 75.0 
          180 2(1) 2(2) 50.0 50.0 
          200 2(2) 

 
100.0 

          220 1(1) 3(2) 5(3) 11.1 33.3 55.6 
         240 1(2) 3(3) 2(4) 

 
16.7 50.0 33.3 

        260 1(2) 2(3) 2(4) 
 

20.0 40.0 40.0 
        280 2(3) 2(4) 1(6) 

  
40.0 40.0 

 
20.0 

      300 1(4) 1(5) 1(6) 1(7) 
   

25.0 25.0 25.0 25.0 
     320 1(4) 1(5) 1(6) 

   
33.3 33.3 33.3 

      340 1(5) 1(6) 1(7) 1(8) 
    

25.0 25.0 25.0 25.0 
    360 3(3) 1(10) 

  
75.0 

      
25.0 

  380 1(3) 
  

100.0 
         400 1(4) 

   
100.0 

        420 1(7) 
      

100.0 
     440 1(4) 1(7) 

   
50.0 

  
50.0 

     460 1(5) 2(6) 
    

33.3 66.7 
      480 2(5) 

    
100.0 

       500 1(3) 1(6) 1(7) 1(8) 
  

25.0 
  

25.0 25.0 25.0 
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Appendix L continued. 
Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

Age 11 
(%) 

Age 12 
(%) 

520 1(4) 1(5) 
   

50.0 50.0 
       540 1(8) 

       
100.0 

    560 1(9) 
        

100.0 
   580 

             600 1(3) 1(7) 
  

50.0 
   

50.0 
     620 1(8) 

       
100.0 

    640 1(5) 
    

100.0 
       660 

             680 1(12) 
           

100.0 
700 

             720 
             740 
             760 
             780 
             800 
             820 
             840 
             860 
             880 1(11) 

          
100.0 

 900 
             920 1(9) 

        
100.0 

   Total [78] 7.7 16.7 23.1 14.1 10.3 9.0 7.7 5.1 2.6 1.3 1.3 1.3 
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Appendix M—Age-length key modified from Devries and Frie (1996) for Gizzard Shad Dorosoma cepedianum aged at El 
Dorado Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the 
total number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged 
sample. Total number of aged individuals is in brackets. 
Length-
group 
(mm) N(Age) 

Age 0 
(%) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

90 2(0) 1(1) 66.7 33.3 
         100 3(0) 2(1) 60.0 40.0 
         110 1(0) 100.0 

          120 
            130 
            140 
            150 
            160 
            170 
            180 
            190 4(2) 

  
100.0 

        200 6(2) 
  

100.0 
        210 3(2) 2(3) 

  
60.0 40.0 

       220 1(2) 6(3) 
  

14.3 85.7 
       230 1(1) 3(3) 

 
25.0 

 
75.0 

       240 4(3) 
   

100.0 
       250 1(2) 2(3) 

  
33.3 66.7 

       260 6(3) 
   

100.0 
       270 5(3) 

   
100.0 

       280 6(3) 
   

100.0 
       290 1(2) 5(3) 

  
16.7 83.3 
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Appendix M continued. 
Length-
group 
(mm) N(Age) 

Age 0 
(%) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

300 3(3) 1(4) 
   

75.0 25.0 
      310 1(3) 

   
100.0 

       320 1(3) 
   

100.0 
       330 1(3) 

   
100.0 

       340 1(3) 
   

100.0 
       350 

            360 1(3) 
   

100.0 
       370 1(6) 

      
100.0 

    380 
            390 
            400 
            410 
            420 
            430 
            440 
            450 1(10) 

          
100.0 

Total [76] 7.9 5.3 21.1 61.8 1.3 0.0 1.3 0.0 0.0 0.0 1.3 
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Appendix N—Age-length key modified from Devries and Frie (1996) for Largemouth Bass Micropterus salmoides aged at El 
Dorado Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the 
total number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged 
sample. Total number of aged individuals is in brackets. 
Length-
group 
(mm) N(Age) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

Age 9 
(%) 

Age 10 
(%) 

140 2(1) 100.0 
         160 

           180 
           200 
           220 
           240 
           260 2(2) 

 
100.0 

        280 
           300 
           320 1(3) 

  
100.0 

       340 1(4) 
   

100.0 
      360 

           380 
           400 1(4) 1(5) 

   
50.0 50.0 

     420 1(4) 
   

100.0 
      440 1(10) 

         
100.0 

460 
           480 
           500 
           520 
           540 1(8) 

       
100.0 

  Total 11 18.2 18.2 9.1 27.3 9.1 0.0 0.0 9.1 0.0 9.1 
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Appendix O—Age-length key modified from Devries and Frie (1996) for Walleye Sander vitreus aged at El Dorado Reservoir in 
Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total number of 
individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. Total 
number of aged individuals is in brackets. 

Length-
group (mm) N(Age) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) Age 7 (%) Age 8 (%) 

220 1(1) 100.0 
       240 4(1) 100.0 
       260 

         280 2(1) 100.0 
       300 2(1) 1(2) 66.7 33.3 

      320 2(2) 
 

100.0 
      340 1(1) 1(3) 50.0 

 
50.0 

     360 
         380 4(2) 1(3) 

 
80.0 20.0 

     400 3(2) 2(3) 
 

60.0 40.0 
     420 1(2) 6(3) 1(4) 

 
12.5 75.0 12.5 

    440 8(3) 1(4) 
  

88.9 11.1 
    460 3(3) 1(4) 

  
75.0 25.0 

    480 5(3) 1(4) 
  

71.4 14.3 
 

14.3 
  500 5(3) 

  
100.0 

     520 1(3) 1(6) 
  

50.0 
  

50.0 
  540 1(7) 2(8) 

      
33.3 66.7 

560 2(4) 1(6) 
   

66.7 
 

33.3 
  580 1(4) 1(5) 1(6) 1(7) 

   
25.0 25.0 25.0 25.0 

 600 3(6) 1(7) 
     

75.0 25.0 
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Appendix O continued. 
Length-group (mm) N(Age) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) Age 7 (%) Age 8 (%) 

620 3(6) 1(7) 
     

75.0 25.0 
 640 1(7) 

      
100.0 

 660 2(8) 
       

100.0 
680 1(7) 

      
100.0 

 Total 81 12.3 13.6 39.5 8.6 1.2 12.3 7.4 4.9 
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Appendix P—Age-length key modified from Devries and Frie (1996) for White Bass Morone chrysops aged at El Dorado 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-group 
(mm) N(Age) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) Age 7 (%) 
190 1(0) 1(1) 50.0 50.0 

      200 1(1) 
 

100.0 
      210 

         220 1(0) 2(1) 33.3 66.7 
      230 3(1) 2(2) 

 
60.0 40.0 

     240 
         250 1(1) 1(2) 1(3) 33.3 33.3 33.3 

    260 1(1) 5(3) 
 

16.7 
 

83.3 
    270 1(1) 4(3) 

 
20.0 

 
80.0 

    280 1(2) 6(3) 
  

14.3 85.7 
    290 1(2) 

  
100.0 

     300 3(3) 
   

100.0 
    310 6(3) 1(4) 

   
85.7 14.3 

   320 8(3) 
   

100.0 
    330 4(3) 1(4) 

   
80.0 20.0 

   340 1(3) 1(4) 
   

50.0 50.0 
   350 1(3) 

   
100.0 

    360 1(4) 
    

100.0 
   370 1(4) 1(5) 

    
50.0 50.0 

  380 2(4) 
    

100.0 
   390 1(7) 

       
100.0 

Total [65] 3.1 15.4 7.7 60.0 10.8 1.5 0.0 1.5 
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Appendix Q—Age-length key modified from Devries and Frie (1996) for White Crappie Pomoxis annularis aged at El Dorado 
Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged sample. 
Total number of aged individuals is in brackets. 

Length-group 
(mm) N(Age) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) Age 7 (%) Age 8 (%) 
120 3(1) 100.0 

       130 3(1) 100.0 
       140 

         150 5(1) 100.0 
       160 2(1) 2(2) 2(3) 33.3 33.3 33.3 

     170 4(3) 
  

100.0 
     180 1(2) 13(3) 

 
7.1 92.9 

     190 1(2) 9(3) 
 

10.0 90.0 
     200 1(2) 11(3) 

 
8.3 91.7 

     210 2(2) 1(3) 
 

66.7 33.3 
     220 4(2) 4(3) 

 
50.0 50.0 

     230 1(2) 4(3) 
 

20.0 80.0 
     240 4(3) 

  
100.0 

     250 1(2) 3(3) 
 

25.0 75.0 
     260 1(2) 6(3) 

 
14.3 85.7 

     270 6(3) 
  

100.0 
     280 1(2) 3(3) 2(4) 

 
16.7 50.0 33.3 

    290 2(3) 1(6) 
  

66.7 
  

33.3 
  300 

         310 3(4) 
   

100.0 
    320 1(5) 2(6) 

    
33.3 66.7 
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Appendix Q continued. 
Length-group (mm) N(Age) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) Age 7 (%) Age 8 (%) 

330 
         340 1(8) 

       
100.0 

350 
         360 1(6) 

     
100.0 

  Total [111] 11.7 13.5 64.9 4.5 0.9 3.6 0.0 0.9 
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Appendix R—Age-length key modified from Devries and Frie (1996) for White Perch 
Morone americana aged at El Dorado Reservoir in Kansas. N = the number of 
individuals in each age-class. Values within the table represent percentages of the total 
number of individuals aged for each age-class, and the values across the bottom represent 
percentages of the entire aged sample. Total number of aged individuals is in brackets. 

Length-group (mm) N(Age) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) 
110 10(1) 100.0 

   120 4(1) 100.0 
   130 13(1) 1(2) 92.9 7.1 

  140 7(1) 2(2) 77.8 22.2 
  150 12(2) 

 
100.0 

  160 10(2) 
 

100.0 
  170 5(2) 2(3) 

 
71.4 28.6 

 180 2(2) 7(3) 
 

22.2 77.8 
 190 1(2) 8(3) 

 
11.1 88.9 

 200 1(2) 7(3) 2(4) 
 

10.0 70.0 20.0 
210 4(3) 

  
100.0 

 220 1(2) 4(3) 
 

20.0 80.0 
 230 1(3) 1(4) 

  
50.0 50.0 

240 2(4) 
   

100.0 
Total [107] 31.8 32.7 30.8 4.7 
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Appendix S—Age-length key modified from Devries and Frie (1996) for palmetto bass Morone saxatilis × M. chrysops aged at El 
Dorado Reservoir in Kansas. N = the number of individuals in each age-class. Values within the table represent percentages of the 
total number of individuals aged for each age-class, and the values across the bottom represent percentages of the entire aged 
sample. Total number of aged individuals is in brackets 

Length-
group 
(mm) N(Aged) Age 0 (%) Age 1 (%) Age 2 (%) Age 3 (%) Age 4 (%) Age 5 (%) Age 6 (%) Age 7 (%) Age 8 (%) 
140 2(0) 3(1) 40.0 60.0 

       160 
          180 2(0) 1(1) 66.7 33.3 

       200 2(1) 
 

100.0 
       220 1(1) 

 
100.0 

       240 1(1) 1(2) 
 

50.0 50.0 
      260 1(1) 1(2) 

 
50.0 50.0 

      280 1(1) 7(2) 
 

12.5 87.5 
      300 14(2) 

  
100.0 

      320 14(2) 
  

100.0 
      340 4(2) 

  
100.0 

      360 5(2) 
  

100.0 
      380 5(2) 

  
100.0 

      400 3(2) 1(3) 
  

75.0 25.0 
     420 1(2) 6(3) 

  
14.3 85.7 

     440 5(3) 
   

100.0 
     460 4(3) 

   
100.0 

     480 4(3) 
   

100.0 
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Appendix S continued. 
Length-
group 
(mm) N(Aged) 

Age 0 
(%) 

Age 1 
(%) 

Age 2 
(%) 

Age 3 
(%) 

Age 4 
(%) 

Age 5 
(%) 

Age 6 
(%) 

Age 7 
(%) 

Age 8 
(%) 

500 4(3) 
   

100.0 
     520 1(5) 2(7) 1(8) 

     
25.0 

 
50.0 25.0 

540 3(7) 
       

100.0 
 560 2(7) 

       
100.0 

 580 1(5) 
     

100.0 
   Total [103] 3.9 9.7 53.4 23.3 0.0 1.9 0.0 6.8 1.0 
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