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Keywords: Andropogon gerardii, ecotypes, climate change, genetic variation, intraspecific 30 

variation, experimental selection 31 

ABSTRACT 32 

 33 

Many prior studies have uncovered evidence for local adaptation using reciprocal transplant 34 

experiments. However, these studies are rarely conducted for a long enough time to observe 35 

succession and competitive dynamics in a community context, limiting inferences for long-lived 36 

species. Furthermore, the genetic basis of local adaptation and genetic associations with climate 37 

has rarely been identified.  Here we report on a long-term (6-yr) experiment conducted under 38 

natural conditions focused on Andropogon gerardii, the dominant grass of the North American 39 

Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of 40 

tallgrass prairie biomass and is widely used in 20,000 km2

INTRODUCTION  55 

 of restoration. Specifically, we asked 41 

1) if  ecotypes are locally adapted to regional climate in realistic ecological communities? 2) does 42 

adaptive genetic variation underpin divergent phenotypes across the climate gradient? 3) is there 43 

evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed 44 

ecotype plots? Finally, 4) are local adaptation and genetic divergence related to climate? 45 

Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet 46 

climate sources) of Andropogon gerardii across a precipitation gradient (500-1200 mm/yr) in the 47 

US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry 48 

environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under 49 

all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity 50 

and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation 51 

was related to climate, primarily rainfall. Without long-term studies, wrong conclusions would 52 

have been reached based on the first two years. Further, restoring prairies with climate-matched 53 

ecotypes is critical to future ecology, conservation and sustainability under climate change.  54 

 56 

Understanding climate driven selection within communities is needed to predict grassland 57 

response to warmer and drier summers in the North American Great Plains, and other grasslands. 58 

In the last 6 years, US grasslands have experienced severe drought, especially in 2012, the worst 59 

drought on record in ~50 years. Furthermore, one of the most important climatic changes 60 
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predicted for grasslands is alteration of amount and timing of precipitation events (IPCC 2013) 61 

and unprecedented “mega-droughts” (Cook et al. 2015). It is critical to assess if local adaptation 62 

limits a population’s ability to adjust to changing climates, or if populations will  have to migrate 63 

to match future climate conditions or be planted through restoration (Christmas et al. 2016; 64 

Nicotra et al. 2010). Ultimately, research needs to inform conservation and restoration managers 65 

to better identify the optimal ecotype (Broadhurst et al. 2008; Jones 2013; Bucharova et al., 66 

2017) on 20,000 km2 

 70 

of restored marginal land across the Great Plains, (Kettenring et al. 2014; 67 

Pickup et al. 2012) and to plant for forage supply in changing climates in an ecological 68 

foundation species (Gibson et al. 2016).  69 

Habitats are often temporally and spatially variable especially with regard to climate, causing 71 

differential selection across climate gradients, genetic divergence among populations, and local 72 

adaptation (Linhart & Grant, 1996). A main goal of evolutionary biology is to understand factors 73 

that contribute to such population genetic divergence (Mayr 1963), formation of ecotypes 74 

(Clausen et al. 1940), and that ultimately lead to new species (Rundle & Nosil  2005). Yet, gaps 75 

exist in knowledge of local adaptation and ecotypic diversity among regionally distributed 76 

populations of most plant species (Falk et al. 2006), especially foundation species, growing in 77 

nature. Local adaptation is fundamental to evolution (Savolainen et al. 2013), and has 78 

implications for adaptation to global changes, conservation, and restoration (Hufford & Mazer, 79 

2003; Nicotra et al., 2010; Shaw & Etterson, 2012).  80 

 81 

Intraspecific variation and local adaptation among plant populations have been widely studied, 82 

mostly in response to abiotic conditions, across large-scale climatic gradients (Clausen et al. 83 

1940; McMillan 1959; Joshi et al. 2001; Bischoff et al. 2006; Ariza & Tielborger 2011; 84 

Munzbergova et al. 2017), altitude (Montesinos-Navarro et al. 2011), and finer scale 85 

environmental variation (Bradshaw 1984; Linhart & Grant 1996; Galloway & Fenster 2000; 86 

Montalvo & Ellstrand 2000; Etterson 2004; Knight et al. 2006; Lowry et al. 2009).  However, 87 

little is known (Bischoff et al. 2006) about plant local adaptation in competitive settings. 88 

Consequently, intraspecific variation and local adaptation are rarely interpreted under realistic 89 

ecological (community) conditions under which it has evolved (Liancourt & Tielborger 2011; 90 

Liancourt et al. 2013; Grassein et al. 2014; Tomiolo et al. 2015; Lowe et al. 2017), which limits 91 
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the ability  to predict the role and strength of local adaptation in natural communities. Several 92 

studies have demonstrated changes in interspecific plant interactions shaping local adaptation 93 

along stress gradients (Grassein et al. 2014; Tomiolo et al. 2015). Still, little empirical data exist 94 

for predicting species’ adaptive response to natural, and now rapidly changing, selection 95 

pressures (Mimural et al. 2017). With increasing climate variability , it is crucial to understand 96 

local adaptation and species interactions in long-lived perennial plants in long-term studies (Metz 97 

& Tielborger 2016).  98 

 99 

Here we investigate whether ecotypic variation in a dominant US Great Plains grass 100 

(Andropogon gerardii, common name big bluestem) is a result of local adaptation to climate 101 

using a reciprocal common garden platform established in 2009 across a precipitation gradient. 102 

This experiment focused on A. gerardii because it is an ecologically dominant grass that 103 

comprises up to 80% of biomass of tallgrass prairie (Weaver, 1932; Epstein et al. 1997; Knapp et 104 

al., 1998). Within the Great Plains, A. gerardii occurs along a climate gradient in place for 105 

~10,000 years (Axelrod 1985), allowing ample time for local adaptation to develop. Due to its 106 

wide distribution and dominance in the Great Plains (Epstein et al. 1997) and spatially varying 107 

climate, we expected extensive natural variation across this gradient among populations with 108 

formation of ecotypes (Johnson et al. 2015). Ecotypic variation among several grass species 109 

across a latitudinal gradient in the Great Plains was documented by the early seminal common 110 

garden studies of McMillan (1959). More recently, intraspecific variation in performance of 111 

switchgrass genotypes originating from different temperature and precipitation environments in a 112 

greenhouse common garden was examined by Aspinwall et al. (2013). They found that genotype 113 

largely explained functional trait variation as related to the climate of origin.  114 

 115 

More specifically, this study aimed to assess genetically based local adaptation of A. gerardii 116 

ecotypes in realistic competitive settings across the Great Plains’ precipitation gradient (500 to 117 

1200 mm/yr precipitation across a ~1,000 km span from western Kansas to Illinois). We 118 

addressed the following questions: 1) Do ecotypes display local adaptation to regional climate 119 

when planted in realistic ecological communities? 2) Does adaptive genetic variation underlie 120 

divergent phenotypes? 3) Do we see evidence of local adaptation if the plants are exposed to 121 

competition among ecotypes of A. gerardii in mixed ecotype plots? 4) Is local adaptation related 122 
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to climate gradients? We hypothesized that locally adapted ecotypes would be more abundant in 123 

their home environment evidenced by outcompeting their non-local ecotypes in both single 124 

ecotype and mixed ecotype plots. If local adaptation was not strong, then we expected ecotypes 125 

to perform comparably across the climate gradient as mediated by plasticity. We expected 126 

genetic differences amongst ecotypes in terms of genetic divergence and outlier genetic loci that 127 

give rise to adaptive variation among ecotypes. Growing all ecotypes mixed together, allowing 128 

competition, was expected to be the most robust test for local adaptation by testing experimental 129 

selection in mixed ecotype plots. By identifying which ecotypes are “winning” in climatically 130 

varying sites, we can relate these differences to climate factors for local adaptation and genetic 131 

divergence. Finally, we expected the strong climate gradient of the Great Plains to drive both 132 

phenotypic and genetic variation.  133 

 134 

This novel experiment assessed local adaptation in realistic ecological settings across a climate 135 

gradient including competitors, in a long-lived perennial grass. By contrast, most studies use 136 

monocultures in the absence of plant-plant competition, as is commonly done with single-spaced 137 

plants (Bischoff et al. 2006). Moreover, the long-term nature of the experiment (6 years) allowed 138 

community processes and climate to play out. However, most studies that vary phenotypes and 139 

genotypes in the field lasted 3 years or less (Franks et al., 2014), and most studied annual plants 140 

(Franks et al. 2014). This study combined population genetics and identification of candidate 141 

genes with performance from long term experimental gardens, which is seldomly done 142 

(Vil lemereuill  et al. 2016). The study assessed experimental selection by measuring outcome of 143 

competing A. gerardii ecotypes which, arguably, should be the most robust test for local 144 

adaptation across the climate gradients. This is rarely done with perennial plants and in long term 145 

studies (Ravenscroft et al. 2015).  Finally, the study related both performance and genetic 146 

variation (Villemereuill et al. 2016) to climate and provided a strong test for environment in 147 

structuring adaptive variation (Schneider & Mazer 2016).  148 

 149 

MATERIALS AND METHODS  150 

 151 

We tested for local adaptation and ecotypic differentiation using several analyses, including 1) 152 

reciprocal garden experiments with A. gerardii ecotypes grown individually and in a mixture;  2) 153 
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tested the ability  of genetic variation to predict ecotype; and 3) identified “outlier” single 154 

nucleotide polymorphisms (SNPs) and tested the degree to which their differentiation was 155 

explained by climate.  156 

 157 

1. Plant materials and seed collection sites, climate of population source of origin   158 

 159 

Andropogon gerardii is a perennial wind-pollinated that grows as a bunchgrass with tight tufts of 160 

culms produced from rhizomes. A. gerardii is an obligate outcrosser (Normann et al. 2003), with 161 

strong self-incompatibil ity. As with many other grasses, A. gerardii consists of a large polyploid 162 

genome (2 Gb). Seed of A. gerardii was collected by hand during autumn 2008, from three 163 

climatically distinct ecoregions along a precipitation gradient from Central Kansas (dry ecotype, 164 

mixed grass ecoregion, Kuchler 1964), Eastern Kansas (mesic ecotype, from the tall grass 165 

ecoregion Kuchler 1964), and Southern Illinois (wet ecotype) from the prairie savanna ecoregion 166 

Kuchler 1964) (Fig. 1, STable 1, SFig. 1 for photo of ecotypes). Prairies of Kansas are 167 

dominated by low stature grasses with few forbs (Knapp et al. 1998).  Eastward, diversity and 168 

structure shifts from grass dominance to diverse communities of tall-stature forbs and shrubs 169 

(Kuchler 1964). Populations for seed collection were on original native prairies within an 80 km 170 

radius of the reciprocal garden planting site. Seeds from each population were collected on at 171 

least three dates and stored at 4 °C. All seed stocks were analyzed for seed filling , germination, 172 

and dormancy to determine percent live seed by Kansas Seed Crop Improvement Center 173 

(Manhattan, Kansas, USA).  174 

 175 

2. Reciprocal garden design - Sown community plots  176 

 177 

We used reciprocal gardens as the standard method to test the extent to which ecotypes are 178 

locally adapted to their home environment vs other locations. This experiment assessed local 179 

adaptation in realistic ecological settings across, which included competitors, in a long-lived 180 

perennial prairie community. 181 

 182 

To do this, we reciprocally seeded each ecotype into plots at four sites: Western Kansas (Colby, 183 

Kansas, 500 mm MAP); Central Kansas (Hays, Kansas, 580 mm); Eastern Kansas (Manhattan, 184 
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Kansas, 871 mm); and Southern Illinois (Carbondale, Illinois, 1167 mm) (Fig. 1, Table 1, Fig. 2). 185 

The Western Kansas site in Colby, Kansas was included to test tolerance of ecotypes to more 186 

arid environments, as might be expected under future warming and drying. Big bluestem occurs 187 

in Western Kansas and Colorado, but only sporadically. This Western Kansas planting site was 188 

included to test the effects of increased drying beyond what is experienced by the species in its 189 

central distribution. All garden sites were under agricultural cultivation prior to reciprocal garden 190 

establishment. All soils were classified as loams (Table 1); specifically, the Eastern three sites 191 

were classified as silt  loams, and Western Kansas (Colby, Kansas) as silt  clay loam (Mendola et 192 

al. 2016). After accounting for percent live seed, seeds from four populations within each 193 

ecotype were mixed in equal quantities. Each ecotype and mixtures of ecotypes were reciprocally 194 

sown at each site in multi-species communities (Johnson et al. 2015). The experiment consisted 195 

of a randomized complete block design at each site with four blocks per site. Within a site, each 196 

block consisted of four plots (each 4 m x 8 m), 3 of which were seeded to a single regional 197 

ecotype (i.e., dry, mesic and wet) and the fourth plot with a mixture of all three regional ecotypes 198 

(i.e., mixed ecotype plot). Plots were separated by a 4–6 m buffer strip (Fig. 2). Plots were 199 

plowed within a week prior to garden establishment and sown to each regional ecotype in June 200 

2009. Seeds were mixed with damp sand to aid in homogenous dispersal, hand-broadcast and 201 

hand-raked into soil . Shortly following seeding, 25 mm of supplemental irrigation was provided 202 

at the Central Kansas site to alleviate a severe deficit during establishment. This supplement 203 

increased precipitation to historical average for that time of year. Throughout the remaining 204 

experiment plots all sites received only natural rainfall without any supplemental water added. 205 

Seeding details are provided in Johnson et al. (2015). Species community composition of sown 206 

plots as well as seeding rate is typical for prairie restorations. We used 70:30 ratio of live C4-207 

grass to C3-grass and forb seed (see Johnson et al. 2015). Total seed density for each plot was 208 

580 seeds m2, similar to that recommended for prairie restoration (Packard & Mutel 1997). A. 209 

gerardii was planted at a density of 270 live seeds m2. Seeds of eight other species (Sorgastrum 210 

nutans, Elymus canadensis, Ascelepias tuberosa, Chamaechrista fasiculata, Monarda fistulosa, 211 

Oligoneuron rigidum, Penstemon digitalis, Ruellia humilis) were added to maintain 212 

characteristic functional group structure and competitive relationships of tallgrass prairie. 213 

Planted seeds of all species, except Andropogon and Sorgastrum were purchased from a 214 

commercial supplier (Ion Exchange Inc., Harpers Ferry, IA, USA) and sourced from across the 215 
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Great Plains. Additionally, plants of volunteer species (plants that came in on their own, not 216 

planted as part of the experiment) from regional seed sources also established in garden sites. 217 

Thus, the composition of the community at each garden site was a mix of mostly volunteers from 218 

regional species pool, and a few planted forb species (Wilson et al. 2016). 219 

 220 

Reciprocal Garden of Single-Spaced Plants for Genotyping and Random Forest Training  221 

  222 

In addition to the sown “community” plots described above we established plants in monoculture 223 

hereafter referred to as “single-spaced” plants.  These reciprocal gardens comprised single-224 

spaced plants for which we knew the ecotype identity and used these plants for 1) characterizing 225 

genetic differences among ecotypes, and their relation to climate and 2) predicting the ecotypes 226 

of plants in the mixed ecotype plots based on combinations of SNP markers unique to plants of 227 

known origin. We needed to predict ecotypes in the mixed plots because, although there are clear 228 

phenotype differences among ecotypes (SFig. 1), it is difficult to assign plants to the dry and 229 

mesic ecotypes because they are more phenotypically similar. We used the same seed sources 230 

described above in sown “communities” (Supplemental Table 1). These plantings were adjacent 231 

to the blocks of community plots. In winter 2009, a subset of seeds collected from each field-232 

collected wild population was germinated and grown in 10 x 10 cm pots in a greenhouse, using 233 

standard greenhouse potting mix (Metro-Mix 510). In August 2009, 20 3-4 month old plants of 234 

10 replicate blocks of 12 populations (3 climate regions x 4 populations per regional climate 235 

ecotype) were planted at each reciprocal garden site (Fig. 1, Table 1, STable 1). Plants were 236 

spaced 50 cm apart and water penetrable landscape cloth was placed around each plant to 237 

discourage growth of competing plants. The phenotypes have been described elsewhere (Olsen et 238 

al. 2013; Caudle et al. 2014; Mendola et al. 2016; Maricle et al. 2017). 239 

 240 

3. Climate and Environment of the Reciprocal Garden Planting Sites 241 

  242 

Data on daily  precipitation were collected at each garden site (Table 1), all located at agricultural 243 

research stations. Rainfall (annual and growing season) for the years of the experiment in Table 1 244 

and SFig.2. We used nearby NOAA weather stations for historical data on climate of source 245 

populations (STable 1).  246 
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 247 

4. Vegetative Cover as Estimate of Performance in Single Ecotype Plots 248 

 249 

Measurements of vegetative cover of A. gerardii in single ecotype plots were made to assess 250 

plant performance of the different ecotypes planted across the climate gradient, and to assess the 251 

extent to which ecotypes are locally adapted to their home site. 252 

 253 

Field Measurements 2010-2015 254 

 255 

Vegetation cover was measured for six years in single ecotype plots from 2010-2015 within a 256 

week of each other across all sites. We focused on vegetative cover (as related to plant biomass) 257 

rather than seed production. To estimate percent cover, a 1.0 m2

 264 

 quadrat was used with one 258 

intersection every 10 cm for a total of 81 intersections. At every intersection, occurrence of A. 259 

gerardii, other grass, forb, or bare ground was recorded. We used four non-overlapping quadrats 260 

per plot for a total of 324 intersections per plot (324 per plot x 12 plots per site=3,888 261 

intersections per site x 4 sites=15,552 intersections each year). Quadrats were randomly placed at 262 

least 50 cm from edge to minimize edge effect.  263 

This study used cover as proxy for fitness rather than measuring seed production as vegetative 265 

cover is a good predictor of success in long-lived perennial plant (Dagleish & Hartnett 2006; 266 

Bensen & Hartnett 2006). Most growth, especially among dominant grasses, is clonal in these 267 

grassland communities (Knapp et al. 1998). Indeed, very little regeneration from seed occurs in 268 

prairies in general (Benson & Hartnett 2006; Lemoine et al. 2017; Dagleish & Hartnett 2006), 269 

including restored prairie (Willand et al. 2013) unless disturbed (Weaver 1932).  Furthermore, 270 

seedlings are rarely observed in the extremely competitive environment of the prairie, nor did we 271 

observe seedlings or recruitment into our plots in the six years of the experiment. Thus, 272 

recruitment from seed into our plots is not likely to play a role in this system over the time frame 273 

of our experiment. 274 

 275 

We have no estimate of growth belowground because that would have required destructive 276 

harvest of the plots. However, other studies focusing on mycorrhizal symbionts indicate that 277 
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local adaptation of A. gerardii may be explained in part on local mycorrhizal symbionts (Johnson 278 

et al. 2010). Mendola et al. (2016) demonstrate evidence for local adaptation measure by 279 

belowground production in the dry and wet ecotypes in the single-spaced plants in our 280 

experimental gardens.  281 

 282 

Statistical Analyses of Vegetative Cover 283 

 284 

A generalized linear mixed model with a logit link was fitted to a binomial response consisting 285 

of the number of intersection points at which A. gerardii was observed using a pre-defined grid 286 

with a total of 81 intersection points per quadrat. The linear predictors included the fixed effects 287 

of site, ecotype, year, and all 2- and 3-way interactions. Random effects in the linear predictor 288 

included block nested within site and also crossed with ecotype, to properly recognize 289 

experimental units for site and ecotype, as well as repeated measures over time. The random 290 

effect of block nested within site had to be removed from the model as its variance component 291 

estimate converged to zero; degrees of freedom for site were adjusted accordingly. In addition, 292 

random effects were included in the model to account for technical replication within each block 293 

(i.e., block (site) *ecotype * year) and overdispersion (i.e., block (site) *ecotype*year*rep) in the 294 

data.  295 

 296 

Overdispersion was evaluated using the maximum-likelihood based fit statistic Pearson Chi-297 

Square/DF. No evidence for overdispersion was apparent in the final model used for inference.  298 

The final statistical model used for inference was fitted using residual pseudo-likelihood. The 299 

model was fitted using the GLIMMIX procedure of SAS (Version 9.4, SAS Institute, Cary, NC) 300 

implemented using Newton-Raphson with ridging as the optimization technique. Kenward-301 

Roger’s procedure was used to estimate degrees of freedom and conduct corresponding 302 

adjustments on standard error estimates. Relevant pairwise comparisons were conducted using 303 

Bonferroni adjustments to avoid inflation of Type I error rate due to multiple comparisons.  304 

 305 

In addition, we related plant cover by ecotype to rainfall from all the sites using regressions of 306 

cover vs rainfall for years 2014 and 2015. We used the two latest years of the experiment as it 307 
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allowed maximum time for community processes and successional dynamics to play out. The 308 

years 2014 and 2015 were average rainfall years. 309 

 310 

5. Sample Collection for Genotyping 311 

 312 

Single nucleotide polymorphisms (SNPs) from single-spaced plants of known population sources 313 

planted in reciprocal gardens were used for 1) characterizing population genetics of the source 314 

populations and relation to climate and 2) using ecotype-specific SNPs from known population 315 

sources to predict ecotypes of unknown plants in mixed plots using random forest models for 316 

classification. 317 

 318 

Reciprocal Gardens-Single Spaced Plants for Genotyping    319 

 320 

We used genotyping-by-sequencing (Poland and Rife 2012; Elshire et al. 2011; Lu et al. 2013) 321 

to identify the SNPs. Leaf samples were collected from individuals with known population origin 322 

from single-spaced plants from reciprocal gardens in Central Kansas (Hays, Kansas) and Eastern 323 

Kansas (Manhattan, Kansas) and Southern Illinois (Carbondale, Illinois). Number of plants 324 

genotyped from single-spaced plants resulted in 110 individuals from the dry ecotype, 106 from 325 

the mesic ecotype, and 98 from the wet ecotype. These plants (total 314 plants) were distributed 326 

amongst 12 populations. About 100 mg of leaf tissue was collected directly into 96-deep well 327 

matrix plates on ice then freeze dried, ground, and stored at -80°C until  DNA isolation. A. 328 

gerardii is known to have different cytotypes (6x, 9x, base number of chromosomes=10) 329 

Norman and Keeler 2003), sometimes within the same population. For this reason, we analyzed 330 

all 480 plants in single-spaced plots for ploidy level using flow cytometry on a Becton Dickinson 331 

FACSCalibur and FACSVantage SE and results analyzed using MODFIT. We found ploidy 332 

level differences were very slight in our 3 ecotypes (12 populations total) (Galliart et al. 333 

unpublished) and that cytotype differences could not explain the sharp ecotype differences 334 

(Galliart et al. unpublished).  335 

 336 

Predicting Ecotype Identity in Mixed Ecotype Plots 337 

 338 
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Samples from single-spaced plants were genotyped and used to develop a predictive random 339 

forest model to classify ecotype identity of individual plants from within the mixed plots based 340 

on SNPs. Leaf samples of individuals from mixed ecotype plots were collected every ~0.5 341 

meters on diagonal transects in 2014 and 2015. Within each plot we collected a subset of plants 342 

from amongst hundreds of individual big bluestem in the plots. We collected a total of ~92 plants 343 

at each site (~23 plants per plot x 4 blocks) with 360 individuals analyzed in 2014 and 351 344 

individuals analyzed in 2015 (total 711 plants). We felt confident that we did not sample an 345 

individual more than once as individuals were identified as a clearly delineated clump of 346 

bunchgrass with tight tufts with clear differentiation between individuals. Furthermore, SNP 347 

profiling and comparison of nucleotide differences among individuals in the same mixed plot did 348 

not show evidence of identical individuals as we would expect if the same plant was sampled 349 

twice (Galliart et al. unpublished). 350 

 351 

Details on DNA isolation, library preparation, sequencing, and SNP identification are provided 352 

in supplemental methods. 353 

 354 

6. Genetic Analyses 355 

 356 

Ecotype Genetic Structure and Differentiation 357 

 358 

We characterized ecotype genetic structure and differentiation to test how ecotypes are 359 

genetically distinguished and how genetics is structured by climate.  To do this, we used single-360 

spaced plants of known ecotype for analyses of genetic structure, differentiation and outlier 361 

analyses. For these analyses, we used all the SNPs in the data set. Population structure was 362 

assessed using Structure v2.3.4 (Falush et al. 2007). Run parameters included 20,000 burn-in and 363 

500,000 MCMC chain length. Admixture was included and correlation between alleles was not 364 

assumed. Three separate iterations per K was performed. To identify optimal number of K 365 

genetic clusters, Evanno’s delta K was calculated in Structure Harvester v0.6.94. K clustering 366 

and permutation were done in CLUMPP v1.1.2 and plot visualization in DISTRUCT v1.1. 367 

Genetic analysis for pairwise population Fst was implemented in GenAlEx v6.503 (Peakall and 368 

Smouse 2006; 2012) using twelve populations comprising the three regional ecotypes.  369 
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 370 

Importance of Climate vs Geography in Structuring Genetic Differentiation 371 

 372 

Partial redundancy analyses (pRDA) was used to estimate the role of geographic differences (lat, 373 

long) vs climate in structuring neutral genetic variation. pRDA is an ordination technique 374 

(Oksanen et al. 2015) that partitions variation, in our case genetic variation, due to climate and 375 

geography (latitude and longitude) and joint contribution of climate and geography (Riordan et 376 

al. 2016). pRDA of genetic variation (Riordan et al. 2016, Laskey et al. 2012), “partials out” 377 

variance from geography while considering variance from climate, and separately “partials out” 378 

variance from climate while considering variance from geography. In this way, relative 379 

importance of climate vs geography in affecting genetic variation can be determined. Three 380 

models were run: The full model (Model 1) considered both climate variables and geography as 381 

explanatory variables, Model 2 was a partial model in which geography explained the genetic 382 

data conditioned on climate variables, and Model 3 was a partial model in which climate 383 

variables explained genetic data conditioned on geography. All precipitation variables were used 384 

in the model except for precipitation of the driest year and number of precipitation events >1.25 385 

cm (Table 1) due to collinearity.  386 

 387 

Outlier Genetic Analysis and Relation to Climate 388 

 389 

Genetic “outliers” are those SNPs that show more differentiation compared to background levels 390 

of differentiation and are putatively under natural selection. We identified “outlier” SNPs in 391 

ecotypes and then related their differentiation to the climate of origin. First, Bayenv2 (Guenther 392 

& Coop 2013) was used to identify “outlier” SNPs, a robust approach providing correction for 393 

population structure and demographic processes while controlling false positives (Guenther & 394 

Coop 2013; Lotterhos & Whitlock 2014). For Bayenv2, SNP data from single-spaced plants were 395 

used to generate a covariance matrix for populations to control for population structure. Four 396 

separate covariance matrices were generated running the MCMC chain to 106 iterations and 397 

visualized to ensure chain convergence. For all loci, population differentiation ranking statistic 398 

XTX (Guenther & Coop 2013) was calculated. This statistic identifies loci that have greater 399 

differentiation than under neutral drift amongst populations. XTX values were empirically ranked 400 
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and the top 1% of differentiated loci were conservatively retained as outliers (46 SNPs). Bayenv2 401 

was also implemented to relate SNPs to climate variables (Table 2). BayeScan v2.1 (Foll and 402 

Gaggiotti 2008) was used as a second method to identify consensus outliers (Lotterhos & 403 

Whitlock 2014). Parameters for BayeScan included 20 pilot runs of length 5K, 50K burn-in 404 

length, and a thinning interval of 10 with 5K final iterations. Prior odds for the neutral model 405 

was 10 and uniform prior on Fis

 409 

 had a lower bound of 0.0 and upper bound 1.0, with 1.0 406 

representing complete inbreeding. Outlier loci were selected using q-values ≥ 0.5 for substantial 407 

evidence of selection.  408 

7.  Random Forest Model to Predict Ecotype Composition Based on SNPs Identified in the 410 

Mixed Ecotype Plots 411 

 412 

Single-spaced plants were genotyped for ecotype-specific SNPs to classify ecotype identity of 413 

individual plants from within the mixed plots using a predictive random forest model. We 414 

needed to predict ecotypes in the mixed plots because, although there are clear phenotype 415 

differences among ecotypes (SFig. 1), it is difficult to assign plants to the dry and mesic ecotypes 416 

because they are more phenotypically similar. We used the random (decision) forest approach 417 

(Breiman 2001) as a powerful machine learning tool to classify individuals, in our case, into 418 

ecotype based on ecotype-specific SNPs. Random forest uses the ensemble method (Altman & 419 

Krzywinski 2017) for classification that operates by constructing many decision trees at training 420 

and taking a weighted vote from all of these trees for prediction. The ensemble method is 421 

preferred because it reduces the overall variance within the model and can help identify strong 422 

signals in noisy data, ultimately providing a robust method to generate a predictive model using 423 

large amounts of data such as found in genotype data. Using random forests to generate a 424 

predictive model first requires training the model using individuals with known ecotype 425 

classification. Once the model is validated for misclassification and accuracy with the training 426 

set, the training model can be used to predict unknown ecotypes based on SNPs. The model was 427 

used to predict the ecotype class, in our case ecotype based on SNPs with known classification 428 

from the single-spaced plants.  429 

 430 

Random forest training and validation 431 
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 432 

The random forest dataset passed SNP quality control as described in supplemental methods. 433 

However, for the random forest model, we used only loci for which there were no missing data 434 

across all individuals, resulting in 522 SNPs. Using a random forest approach, we are able to 435 

generate a predictive model based on SNP profiles of individuals of known ecotype designation. 436 

SNPs from 314 individuals (110 from the dry ecotype, 106 from the mesic ecotype, and 98 from 437 

the wet ecotype were used to train and cross validate a random forest predictor model 438 

implemented in randomForest R package (Liaw & Wiener 2002). The random forest used SNPs 439 

as predictor variables at each split of decision trees (SFig. 3) and generated 500 trees for each 440 

forest. (After testing multiple values of predictor variables (SNPs), we used 22 SNP variables as 441 

optimum for training.) Ten unique groups of plants of known ecotype from single-spaced plants 442 

were generated to create ten validation sets to quantify overall misclassification rate. For each of 443 

the ten groups, nine groups were combined to train the random forest prediction model. The 444 

remaining one group was used for validating the accuracy of the model. Individuals in the 445 

validation sets had their known ecotype masked and used the training forests to predict to which 446 

ecotype the individual belonged. Individuals were classified to the ecotype bin based on greatest 447 

number of votes for that ecotype across all 500 trees (SFig. 3). Assignment of the masked 448 

individuals from the training model was compared to the true identity of plants to generate 449 

misclassification rates and provide a metric of how accurately we can predict ecotypes based on 450 

their genotype profile. This process was repeated with each of the ten unique ecotype groups to 451 

determine an overall misclassification rate.   452 

 453 

Predicting Ecotype in Unknown Plants of Mixed Ecotype Plots 454 

   455 

The next step was to predict ecotype identity of unknown plants growing in mixed ecotype plots 456 

using the trained random forest model. All 314 individuals from single-spaced plants were then 457 

combined to generate a random forest using the same model parameters described above with 22 458 

predictor variables and 500 trees in each forest. Identity of genotyped plants from mixed ecotype 459 

plots from 2014 and 2015 (360, 351 individuals, respectively) were determined as the ecotype 460 

that received greatest number of votes across 500 trees in the final random forest. Analysis of 461 
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individuals from mixed plots across two years assesses annual variation in growth and 462 

composition within long-term plots.   463 

 464 

RESULTS 465 

 466 

Ecotypes Locally Adapted to Regional Climate in Realistic Ecological Communities  467 

 468 

When comparing ecotype differences by each garden site using a local vs foreign ecotype 469 

comparison, (i.e., how an ecotype from that locality performs compared to foreign ecotypes 470 

planted in the site), there was evidence of significant cover differences among ecotypes within a 471 

site. In the Western Kansas reciprocal garden site (Colby, Kansas, (Table 1, Fig. 3), the driest 472 

site, the dry ecotype cover (~20-40%) was significantly greater (p< 0.046) than the wet ecotype  473 

(~5%), and in all years the dry ecotype was greater than mesic (~10-25%) but not significantly 474 

different. A similar pattern was observed in the Central Kansas reciprocal garden (Hays, Kansas) 475 

the next driest site, where in 5 out of 6 years, the dry ecotype cover (~25-40%) was significantly 476 

greater (p< 0.039) than the wet ecotype (~5%). In all years at the Central Kansas reciprocal 477 

garden (Hays, Kansas), the dry ecotype was greater than the mesic ecotype (~15-25%) but not 478 

significantly different. Interestingly, in the Eastern Kansas reciprocal garden (Manhattan 479 

Kansas), there were no significant differences among ecotypes across all years and cover ranged 480 

from 20-35%, regardless of ecotype. In the Southern Illinois reciprocal garden (Carbondale, 481 

Illinois), the wettest site, there were no significant differences among ecotypes during the first 482 

two establishment years and all ecotypes maintained relatively low levels of cover (<10%). From 483 

2012 onward, the dry ecotype continued to show significantly lower (p < 0.018) cover (<10%) 484 

compared to the wet (25-40%) ecotype, but mesic (15-30%) and wet ecotypes (25-40%) were not 485 

significantly different from each other. 486 

 487 

Based on the same data, ecotypes showed signs of local adaptation when planted in their home 488 

site compared to their away site (Table 1, Fig. 4). In all years, the dry ecotype (Fig. 4) had 489 

significantly lower cover (cover <10% p < 0.032) than other ecotypes when planted in the 490 

Southern Illinois reciprocal garden (Carbondale, Illinois, wettest site). For the wet ecotype (Fig. 491 

4), in the first two years there were no significant differences between the reciprocal gardens in 492 
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western Kansas (Colby, Kansas), Central Kansas (Hays, Kansas) and Southern Illinois  493 

(Carbondale, Illinois), that is driest, dry, and wettest, respectively (cover 10-20%) but was 494 

significantly higher in Eastern Kansas (Manhattan Kansas) in 2010 (p < 0.041). Following the 495 

establishment years, from 2013 onward, the wet ecotype had significantly increased cover (~25-496 

40%) in Eastern Kansas (Manhattan, Kansas) and Southern Illinois  (Carbondale, Illinois (p < 497 

0.049) but lower in western (Colby, Kansas) and Central Kansas  (Hays, Kansas) sites, where the 498 

cover of the wet ecotype was reduced to about 5% cover (p< 0.003). Interestingly, across all 499 

years, there were no significant cover differences in the mesic ecotype among all four planting 500 

sites (Fig. 4).  501 

 502 

Regressions of cover by ecotype vs annual rainfall for combined years of 2014 and 2015, the 503 

latest measurement years presumably when the vegetation was stabilized, showed that the dry 504 

ecotype had highest cover with low rainfall, and decline in cover with increased rainfall as 505 

occurs in the wettest site of Southern Illinois  (Carbondale, Illinois, p = 0.05, R2 = 0.50) (Fig. 5). 506 

The wet ecotype showed the opposite pattern with low cover in Western and Central Kansas and 507 

increase in cover with precipitation as occurs in Southern Illinois (Carbondale, Illinois, p = 508 

0.007, R2=0.73). Interestingly, cover of the mesic ecotype was only weakly related to rainfall (p 509 

= 0.26, R2 

 513 

= 0.21, data not shown). This clearly shows cover of dry and wet ecotypes is related to 510 

rainfall and corroborates their delineation. There were no significant correlations with other 511 

variables (data not shown). 512 

Genetic Divergence Among Ecotypes Supports Phenotype Differences  514 

 515 

Divergence and Diversity, Relation to Climate vs Geography   516 

 517 

 Structure results indicate K=3 genetic clusters with two predominating, one occurring in dry and 518 

mesic ecotypes and the other in wet ecotype (Fig. 6). Based on pairwise Fst (STable 3), only 519 

slight neutral differentiation was observed between populations with F’ st (Meirmans et al. 2011) 520 

of .028. In general, the wet ecotype showed greatest genetic distance with populations from 521 

Kansas with Fst as high as 0.037. Populations from the dry and mesic ecotypes show lower 522 

genetic distance as one might expect from geographic proximity, with Fst between 0.011-0.016. 523 
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 524 

We used pRDA analyses of genetic variation to quantify relative importance of climate vs 525 

geography in the full model (Model 1) that incorporates both climate and geography (STable 4). 526 

In the second model in which geography explained genetic variation conditioned on climate, 527 

total variance explained was 15%. In the third model in which climate variables explained 528 

genetic variation conditioned on geography, total variance explained was 74%. Thus climate 529 

structured genetic diversity more than geography (latitude and longitude). Total joint explained 530 

was 89% of total explained, leaving 11% unexplained by joint geography and climate variables. 531 

Bi-plot of the full model (1) (SFig. 4) showed that precipitation variables dominated loadings on 532 

pRDA1 and temperature variables explained loadings on pRDA2. 533 

 534 

Outlier Analysis Related to Climate  535 

   536 

For outlier analysis using Bayenv2, the top 1% of the XTX values comprised 46 SNPs (STable 537 

5). About half of the SNPs had annotations. Candidate genes function ranged from NAC 538 

transcription factors, peroxidases, glutamate synthetase, and GA1 (Sb01g021990.1) (STable 5), 539 

among others. Using Bayenv2 to relate outlier SNPs to climatic variables, SNPs had more 540 

significant associations with temperature-related variables (mean annual temperature, seasonal 541 

diurnal temperature variation) followed to a lesser extent by variables related to precipitation 542 

(seasonal mean precipitation) (STable 6, SFig. 5). BayeScan v2.1 was used to provide a cross 543 

check of outliers between two methods to provide a list of consensus outliers. We identified 64 544 

SNPs showing divergent selection, some of which were annotated (18 SNPs) and in common 545 

with Bayenv (15 SNPs) (STable 5, SFig 6). A SNP outlier near a gene of interest and identified 546 

in both BayeScan v2.1 and Bayenv2 was GA1 and ranked as 14th highest XT

 554 

X differentiated SNP 547 

(STable 5) from Bayenv2 analysis. GA1 is a gene that codes for gibberellic acid, which is well 548 

known to be involved with controlling plant height and internode length (Milach et al. 2002). 549 

Across the climate gradient, the wet ecotype individuals show an increased frequency of the 550 

GA1 “tall” allele, while the dry ecotype is nearly fixed for the “short” allele (Fig. 7). GA1 was 551 

also identified in GWAS analyses using TASSEL, Galliart unpublished) and associated with 552 

height (Galliart et al. unpublished data).  553 
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Random Forest Training and Validation Using Plants of Known Ecotype 555 

 556 

Individuals from the validation set from plants of known ecotype were assigned to one of three 557 

ecotypes (dry, mesic, wet) with accuracy of 79% (STables 7, 8) and overall misclassification rate 558 

of 21%. The highest rate of misclassification occurred with mesic individuals incorrectly called 559 

dry ecotype 26.4% (28/106 mesic plants). Of all ecotype pairs misclassified (21%, STable 7), 560 

68% of those arose from mesic being called dry or vice versa. Importantly, misclassification of 561 

the wet ecotype was 4% of all wet ecotype individuals (4/98) and rarely misclassified (STables 7, 562 

8). This is also shown in the training/validation triangle SFig. 7.  Qualitatively, the 563 

training/validation triangle indicates excellent identification of wet ecotype individuals with 564 

somewhat less, but still good, discernment between dry and mesic ecotypes. 565 

 566 

Evidence for Selection across the Climate Gradient: Ecotype Classification from Random Forest 567 

Model   568 

 569 

We used random forest model training and validation of SNPs from plants of known ecotype to 570 

predict ecotype composition from unknown plants in mixed ecotype plots (Figure 8, STable 9, 571 

SFig 8). In mixed ecotype plots, in 2014, unknown individuals were predominantly predicted to 572 

be dry ecotype plants in Western Kansas (Colby, Kansas) Central Kansas (Hays, Kansas) (64 dry 573 

ecotype plants/88 total in Western Kansas (Colby, Kansas), 64 dry ecotype plants/90 total in 574 

Central Kansas (Hays, Kansas). A moderate number of mesic plants in mixed plots were 575 

predicted in Western Kansas (Colby, Kansas) and Central Kansas (Hays, Kansas) (22, 26, 576 

respectively). In Western Kansas (Colby, Kansas), only two plants were predicted as wet ecotype 577 

and no plants were predicted as wet ecotype in Central Kansas (Hays, Kansas). At the Eastern 578 

Kansas site (Manhattan, Kansas), mixed plots were predicted to be dominated by wet ecotype 579 

individuals (48 wet ecotype plants/85 total) with greater mixture of all ecotypes in Eastern 580 

Kansas (Manhattan, Kansas) (48 wet, 15 mesic, 22 dry ecotypes). At the Southern Illinois site 581 

(Carbondale, Illinois), wet ecotype dominates (65 wet ecotype plants/88 total) with 8 and 15 582 

plants predicted for dry and mesic ecotypes, respectively. The percentage of predicted ecotype of 583 

individual plants is depicted in pie charts across sites (Fig. 8). We are potentially slightly 584 

underestimating role of mesic ecotypes in mixed plots across the range for 2014. However, in 585 
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spite of modest error rate of misclassification of mesic to and dry ecotypes, in Central Kansas 586 

(Hays, Kansas) and Western Kansas (Colby, Kansas), the dry ecotype still  makes up the majority 587 

of ecotype identified. In the Eastern Kansas (Manhattan, Kansas) and Southern Illinois 588 

(Carbondale, Illinois) sites, in spite of the modest error rate of misclassification of mesic to dry 589 

ecotype, the wet ecotype is easily  discernable from the others, and makes up the majority of the 590 

ecotype identified.  591 

 592 

A similar pattern of ecotype composition was observed in 2015 (SFigs. 9,10, STable 10) and 593 

corroborates 2014 results. In dry Western Kansas (Colby, Kansas) and Central Kansas (Hays, 594 

Kansas), the dry ecotype again was predicted to dominate mixed plots with only one wet ecotype 595 

individual predicted in both sites. At the Eastern Kansas (Manhattan, Kansas) and Southern 596 

Illinois (Carbondale, Illinois) sites, ecotype composition showed the same trends as observed 597 

from 2014 sampling.  598 

 599 

DISCUSSION   600 

 601 

We found that one of the most dominant grasses of the North American Great Plains 602 

demonstrates local adaptation. Our study is unique in that it leverages a long-term data set (6 yr) 603 

and focuses on plants in realistic communities that allowed successional processes and climate 604 

variation to take place, thereby providing the most robust test for local adaptation. Supporting 605 

our findings, we find that local adaptation, candidate genes, and genetic variation were all related 606 

to climate. This study demonstrates clear ecotype differentiation in populations from the wettest 607 

(Southern Illinois) and driest (Western and Central Kansas) regions of the species’ core 608 

distribution. Surprisingly, the apparent generalist mesic ecotype performs well at all sites and 609 

seems less affected by climate. Ecotype performance was explained by genetic differences in 610 

neutral diversity and candidate genes. Ecotype differentiation was related to climate, primarily  611 

rainfall, underscoring power of measuring genetic and phenotypic responses in common gardens 612 

(Lowe et al. 2017; Talbot et al. 2017; Villemereuil et al. 2016; De Kort et al. 2014) with 613 

experimental selection (Franks et al. 2016; Ravenscroft et al. 2015) under realistic conditions. 614 

Several other studies have demonstrated adaptation to climate starting with the early reciprocal 615 

transplant studies of Clausen et al. (1940) in the Sierra Nevada mountains using altitudinal 616 
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ecotypes of Potentilla. These seminal studies of Clausen, Keck, and Hiesey were followed up 617 

with McMillan’s (1959) common garden studies of grass ecotypes in relation to the Great Plain’s 618 

climate. More recently using a greenhouse approach, Munzbergova et al. (2017) showed that 619 

Festuca rubra populations originating from climates in Norway found that traits relating to 620 

foraging strategy varied with the climate of origin. Aspinwall et al. (2013) found that switchgrass 621 

genotype largely explained functional trait variation as related to the climate of origin. Largely 622 

writ, our results corroborate that ecotypic differentiation can occur across ecosystems spanning 623 

climatic gradients and that this local adaptation results in differential adaptive response to 624 

climate (e.g., Figs. 3,4,5). Uncovering and characterizing this local adaptation is essential to 625 

understanding responses to anticipated global change. 626 

 627 

1. Local Adaptation in Perennial Grass Ecotypes in Long-term Single Ecotype Plots 628 

 629 

Over the spatial climate gradient of the Great Plains, clear ecotype phenotypic differentiation of 630 

wet and dry ecotypes were observed in single ecotype plots. The wet ecotype outperformed 631 

others in Southern Illinois (Carbondale, Illinois) and the dry ecotype outperformed at Western 632 

Kansas (Colby, Kansas) and Central Kansas (Hays, Kansas). Several lines of evidence suggest 633 

that climate, especially precipitation, most strongly structured local adaptation, particularly at the 634 

dry end of the range margins. Furthermore, with a historic drought in 2012 in Kansas, the dry 635 

ecotype prevailed unaffected while the wet ecotype continued to decline. Interestingly, the mesic 636 

ecotype showed similar cover regardless of planting site and its performance was uncorrelated 637 

with rainfall at all sites, suggesting the mesic ecotype is a generalist that does moderately well 638 

over a range of rainfall conditions, potentially through plasticity. Interestingly, at the mesic 639 

Eastern Kansas (Manhattan, Kansas) planting site, all three ecotypes were not significantly 640 

different in cover, suggesting the mesic site can support all three ecotypes equally well, perhaps 641 

due to fluctuating drought and heavy rainfall.  642 

 643 

Over the temporal gradient extending through 6 years, the trajectory for expression of local 644 

adaptation differed among sites and ecotypes. These patterns are only evident across longer times 645 

scales: a short-term, 2-yr study did not capture local adaptation at the Illinois (wet) site (Johnson 646 

et al. 2015). Only with longer periods of at least 4 years was this strong local adaptation 647 
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observed at the wettest site, while the dry ecotype performed well in dry regions from the start of 648 

experiment. The time-lag in response of the wet ecotype, especially at the wet site in Illinois, 649 

may be due to differences in competitive environments across the gradient. We surmise that local 650 

adaptation cannot be detected until early successional forbs are outcompeted by grasses (McCain 651 

et al. 2010). Thus, competition with forbs may have delayed expression of local adaptation of the 652 

wet ecotype in Illinois in the first few years, although further experimental studies are needed. 653 

Other researchers who have studied local adaptation in competitive environments have found 654 

that expression of local adaptation depends on biotic environment, including competition 655 

(Bischoff et al. 2006; Liancourt et al. 2015; Tomiolo et al. 2015) and facilitation (Johnson et al. 656 

2010).  657 

 658 

Differences in ecotype performance in singe ecotype plots corroborates sharp morphological 659 

differences among ecotypes observed in single-spaced plants (Caudle et al. 2014; Olsen et al. 660 

2013; Mendola et al. 2016). The dry ecotype was dwarfed in size, short, having narrow leaves 661 

(SFig. 1) putatively to reduce evaporative loss (Johnson et al. 2015; Maricle et al. 2017) as an 662 

adaptation to drought. In contrast, the wet ecotype is tall, robust, and leafy (SFig. 1), presumably 663 

adapted to highly competitive environments where it grows amongst tall forbs and shrubs in wet 664 

prairies (Kuchler 1964). Interestingly, the dry ecotype flowers 3 weeks earlier than the wet 665 

ecotype, regardless of planting site, portending the beginning of reproductive isolation (Galliart 666 

et al. unpublished). This study and other several recent studies also highlight the importance of 667 

intraspecific variation, genetic (Malyshev et al. 2016; Poirier et al 2012) or phenotypic (Avolio 668 

et al. 2013; Des Roaches et al. 2017; Bolnik et al. 2011; Hamann et al. 2016), in ecological 669 

settings or in response to human-induced change (Mimural et al. 2017).  670 

 671 

2. Genetic Analyses Support Differentiation of Wet and Dry Ecotypes   672 

 673 

Genetically distinguished ecotypes support cover results across the precipitation gradient, similar 674 

to results observed by Gray et al. (2014) and Price et al. (2010). STRUCTURE plots show clear 675 

differentiation of dry and mesic from wet ecotypes, with admixture between adjacent dry and 676 

mesic ecotypes (Fig. 6). We have also shown that environmental factors, especially precipitation, 677 

explain more of genetic differences than does geographic location (SFig. 4, STable 4).  678 
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 679 

Ecotypes appeared functionally different (SFig. 1) suggesting adaptive variation in genetic 680 

outliers. Ecotypes differ in terms of candidate genes such as NAC, glutamate synthetase, 681 

peroxidase, and GA1. GA1, found in both Bayenv and Bayescan (STable 5) has high ecological 682 

and functional significance. GA1 controls internode length and consequently height (Mill ach et 683 

al. 2002). GA1 allele frequency varies clinally across the Great Plains; one form dominates in 684 

the dry ecotype, characterized as short stature, or dwarfed (SFig. 1) while the alternate allele 685 

dominates in the wet ecotype, characterized by a robust, tall form (SFig. 1). The association of 686 

height and GA1 was also found in TASSEL analyses (Galliart unpub), corroborating observed 687 

height differences between dry and wet ecotypes (with wet ecotypes growing 4.7x taller than the 688 

dry ecotype). Height correlates with increased biomass, and greater competitiveness, as would be 689 

advantageous in mesic prairies of the Eastern Great Plains which are dominated by tall forbs, and 690 

shrubs (Kuchler 1964). Conversely, the dry ecotype from a xeric source of origin would be 691 

advantaged by short stature to reduce evaporative loss as an adaptation to dry climates (Maricle 692 

et al. 2017). These results provided powerful insight into candidate genes and genetic 693 

mechanisms responsible for adaptive divergence.  694 

 695 

Outlier SNPs identified in Bayenv showed a clear relationship with climate and associated with 696 

temperature and precipitation variables (STable 6). Of the top 1% of outliers (46), 16 had a 697 

significant association with annual mean temperature, 12 associated with seasonal diurnal 698 

temperature variation, and 6 associated with growing season mean precipitation. Our study takes 699 

similar approaches using outlier candidate genes across gradients, i.e., genome-environmental 700 

associations as highlighted in recent excellent reviews. For example, Bragg et al. (2015) further 701 

expanded on landscape genomics in non-model systems, especially foundation ecological 702 

species; Rellstab et al. (2015) suggested a practical guide to studying the role of environment in 703 

identifying adaptive loci; Sork et al. (2016) showed the importance of identifying underlying 704 

candidate genes for phenotypes under climate selection with oaks as the focal species. Laskey et 705 

al. (2018) suggest approaches to synthesize evidence from common gardens and genome-706 

environmental associations. Recent empirical studies have addressed various genome-707 

environmental associations. Arabidopsis halleri showed genomic footprints of selection to 708 

altitude in the Alps (Fischer et al. 2013). Multiple species of oaks showed a signature of 709 
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selection in the same candidate genes amongst 71 populations in Switzerland (Rellstab et al. 710 

2016). Laskey et al. (2012) used redundancy analyses to quantify the association between 711 

climate, geography and genomics in Eurasian Arabidopsis populations to discover that early 712 

spring temperature explained most of the variation. Pluess et al. (2016) related phenology 713 

candidate genes to climate, geographic and seasonality in European beeches. Finally, Exposito-714 

Alonso et al. (2017) linked genetic variation to drought tolerance in Arabidopsis accessions from 715 

contrasting climates and highlighted the role of within species variation in the evolutionary 716 

response to climate.  717 

 718 

3. Experimental Selection Studies Corroborate Wet and Dry Ecotypes 719 

 720 

Letting the environment and biotic interactions impart selective pressures in local adaptation 721 

studies is a powerful approach to understand evolutionary processes. Indeed, this is the first time, 722 

to our knowledge, where ecotypes of the same species were grown together and allowed to 723 

compete over the long term. This should be the most robust test for local adaptation. Thus, by 724 

identifying which ecotypes are “winning” under spatially and temporally varying climate, we can 725 

relate these differences to identify climate drivers of local adaptation and intraspecific variation. 726 

Moreover, longer study periods are necessary to account for transient effects and allow 727 

competition and succession to have an effect. 728 

 729 

We found that the dry ecotype, when grown with the other two ecotypes, outcompeted at the dry 730 

end of the gradient, as evidenced by its greatest proportion in mixed ecotype plots in Central and 731 

Western Kansas. Similarly, on the wet end of gradient, the wet ecotype exhibited local 732 

adaptation, as it occurred in greatest proportion in its wet home environment of Southern Illinois. 733 

If plant responses were due to phenotypic plasticity, we would have seen all three ecotypes 734 

equally represented in mixed plots across planting sites. These results mostly corroborate our 735 

findings in the single ecotype plots, but there was a surprising exception.  736 

 737 

Although dry and wet ecotypes performed best in dry and wet environments, respectively, the 738 

mesic ecotype did not perform best in its home location of Eastern Kansas. This was also the 739 

case for single ecotype plots where no significant differences occurred in cover among ecotypes 740 
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in Eastern Kansas, where all ecotypes performed equally well. Further, the wet ecotype 741 

outcompeted the mesic ecotype in the mixed plots located in Eastern Kansas. The years of mixed 742 

ecotype plot collection had normal precipitation, so it is doubtful precipitation played a role. 743 

Furthermore, this result was not due to lack of random forest discernment, as the wet ecotype is 744 

easily  distinguished from the others, and makes up the majority of the ecotype identified in 745 

Eastern KS and Southern Illinois.  So why did the mesic ecotype do comparatively poorly in its 746 

home environment of Eastern Kansas, being outperformed by the wet ecotype? The wet ecotype 747 

appears to be more competitive than the mesic ecotype in Eastern Kansas when the ecotypes 748 

were planted together in the mixed ecotype plot compared to single ecotype plots. That is, the 749 

wet ecotype wins inter-ecotype competition (between wet and mesic ecotypes) in the mixed 750 

ecotype plots, but when grown among other wet ecotype plants in single ecotype plots, intra-751 

ecotype competition is stronger, resulting in overall low cover of wet ecotypes in single ecotype 752 

plots. The wet ecotype putatively outcompetes the mesic ecotype in Eastern Kansas because it is 753 

more vigorous due to its tall, robust stature (~3 times taller, ~2 times more biomass), thus 754 

suppressing the shorter stature mesic ecotype, resulting in greater dominance of the wet ecotype 755 

in Eastern Kansas. These results highlight the increased strength of biotic factors, especially 756 

between-ecotype competition in the expression of local adaptation at the wetter end of the 757 

gradient. At the dry end of the gradient, abiotic factors such as low precipitation are selective 758 

pressures in local adaptation and the dry ecotype dominates in single and mixed ecotype plots.  759 

 760 

Our results corroborate other studies (reviewed in Franks et al. 2014) showing selection over 761 

time. Several studies show selection-induced treatment effects on phenotypes in intact 762 

communities. The Buxton grassland studies of climate change treatments imposed over 15 years 763 

shows adaptive selection and differentiation of phenotypes of species (Fridley et al. 2010), and 764 

outliers sorting of genotypes (Ravenscroft et al. 2015) among treatments plots. Avolio & Smith 765 

(2013) studied changes in phenotype in response to rainfall manipulation in intact grassland and 766 

found A. gerardii phenotypic variation but no adaptive response to drought. Resurrection studies 767 

in which phenotypes and genotypes from historical seed are compared with contemporary 768 

progeny (Franks et al. 2018) have shown evidence for contemporary evolution. Franks et al. 769 

(2016) showed rapid genome evolution in response to drought in Brassica rapa. Nevo et al. 770 

(2012) found that cereal grasses in Israel collected as seed 28 years apart showed genetic and 771 
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phenotypic differentiation consistent with climate warming and drying. These studies show that 772 

with strong enough selection pressures, evolution is measurable in contemporary time. 773 

 774 

4. Broader Implications for Climate Change, Conservation and Restoration 775 

 776 

Several lines of evidence suggest that climate, especially seasonal precipitation and temperature 777 

variables, structures ecotypes and genetic divergence. First, cover of wet and dry ecotypes was 778 

correlated with precipitation, with wet ecotypes outperforming dry ecotypes in wet climates 779 

(Figs. 3, 4) and conversely, for dry ecotypes. Second, pRDA shows that climate, more than 780 

geographic location, structures neutral genetic variation. Third, outliers were related to both 781 

temperature and precipitation factors. Precipitation and temperature patterns for the last 10,000 782 

years (Axelrod 1985) have been a selective pressure leading to adaptive variation. This has also 783 

been observed with experimental manipulation of rainfall and temperature (Avolio et al. 2013). 784 

The ability of species to tolerate extreme drought was demonstrated by Exposito-Alonso et al. 785 

(2018) in which they highlighted the role of within species variation in drought tolerance in 786 

Arabidopsis and its evolutionary response to climate. More broadly, the importance of 787 

precipitation as a selection force in plants and animal populations has been discovered through 788 

meta-analysis (Siepielski et al. 2016). 789 

 790 

How climate structures A. gerardii genetics, form, and function is critical, as the foundation 791 

species of tallgrass prairie. Climate is predicted to change in the Great Plains (IPCC 2013), 792 

resulting in increased occurrence and severity of drought. We are currently manipulating rainfall 793 

with a rainout drought experiment in these same plots to address the role of drought.  A recent 794 

phenotypic modeling study (Smith et al. 2017) predicted that, with climate change, populations 795 

of short-statured, dwarf forms of A. gerardii from dry parts of its range would be favored 600 km 796 

eastward, and result in 60% decrease in productivity and biomass. Evolutionary adaptation in A. 797 

gerardii may not be able to provide what ecology and future climate demands (Kokko et al. 798 

2017).  Reduction in productivity could have cascading effects on prairie function (Knapp et al. 799 

1998), cattle forage production (Gibson et al. 2016), grassland restoration (Baer et al. 2018), and 800 

conservation. Furthermore, about 60% of agricultural production in Kansas (~$10 billion, NASS, 801 

2014) was attributed to cattle production, with A. gerardii being the main forage grass for cattle. 802 
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Tallgrass prairie, one of the most diverse grasslands, is critically endangered with only 4% native 803 

prairie remaining (Samson and Knopf 1994) with A. gerardii being the iconic grass of prairies. 804 

Ultimately, this research will  inform land managers which grass ecotypes are best suited for 805 

conservation and restoration for drier climates. Thus, knowing how to restore prairie with 806 

climate-matched ecotypes is critical to the future ecology, agricultural sustainability  of critical 807 

grasslands. 808 

 809 
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Tables 1197 

 1198 

 1199 

 

Reciprocal 

Garden 

Planting Site 

(Town, 

County) 

Soil Type 

 

Elev. 

(m) 

 

Lat. 

(°N) 

Long 

(W) 

 

 

Rainfall  

6-year 

mean 

2009-2016 

(range) 

(cm) 

 

Annual 

Number 

of Pcp 

Events 

>1.25 cm 

 

 

 

Pcp 

Driest 

Year 

(cm) 

 

 

Mean 

Annual 

rainfall  

(cm) 

 

 

Growing 

Season 

Mean 

Rainfall  

(cm) 

(sum+sp) 

 

 

Annual 

Diurnal  

Temp 

(°C) 

 

Growing 

Seasonal 

Diurnal 

Temp 

(°C) 

(sum+sp) 

 

 

Annual 

Mean 

Temp 

(°C) 

 

Growing 

Season 

Mean 

Temp 

(°C) 

(sum+sp) 

 

 

Temp 

Severity 

Index 

(# days 

over 

95F) 

Western KS 

(Colby, KS 

Thomas, Co) 

KSU Ag 

Expt Station 

(Ulysses Silt Loam) 

972 
39.39 

101.06 

48.0 

(29.4-66.8) 
13.0 

28.37 

(1967) 
52.5 39.44 -2.0 -2.0 10.9 16.7 21.3 

Central KS 

(Hays KS 

Ellis Co) 

KSU Ag 

Expt Station 

(McCook Silt 

Loam) 

603 
38.85 

99.34 

54.6 

(38.3-67.9) 
15.4 

36.27 

(1988) 
59.6 43.18 -3.2 -3.4 12.3 18.3 29.2 

Eastern KS 

(Manhattan, KS 
315 

39.19 

96.58 

89.1 

(61.5-
21.9 

39.16 

(1966) 
90.5 63.47 -4.2 -4.3 12.8 18.9 23 
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Riley Co) 

USDA 

Plant Materials 

(Belvue Silt Loam) 

110.2) 

Southern Illinois 

(Carbondale IL 

Jackson, Co) 

SIU Ag Research 

Station 

(Stoy Silt Loam) 

127 
37.73 

89.17 

125.6 

(76.2-

125.6) 

32.7 
67.38 

(1963) 
119.8 64.51 -5.3 -5.1 13.5 19.0 6.3 

 1200 

Table 1. Historical Weather data (30-year normals) for planting site locations. Precipitation data for 6 years of the experiment are 1201 

presented in SFig. 2. 1202 
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Figure Caption 1203 

 1204 

 1205 

Fig 1. Location of reciprocal gardens planting and collections sites across the US Great Plains. 1206 

White circle is reciprocal garden location. Black triangles are the collection prairie for the seeds. 1207 

For prairie population acronyms, see STable 1. Western Kansas (Colby, Kansas) is the satellite 1208 

reciprocal site to test the range of tolerance for big bluestem. Note that seeds were not collected 1209 

in Colby. 1210 

 1211 

Fig 2. Reciprocal garden transplant design for sown community plots. Single colors are single 1212 

ecotype plots, checkerboard is mixed ecotype plot. At each planting site, there are 4 replicate 1213 

plots. Ecotype plots at each site were randomized. Note that the Colby planting site had no local 1214 

ecotype but was included to test the threshold of response to drier locations as might be 1215 

experienced in the future. 1216 

 1217 

Fig. 3. Vegetative cover (least square mean estimates with standard errors) by planting sites 1218 

(Western Kansas (Colby, Kansas), Central Kansas (Hays, Kansas), Eastern Kansas (Manhattan, 1219 

Kansas) and Southern Illinois (Carbondale, Illinois) for each ecotype in the single ecotype plots 1220 

from years 2010-2015 across the Great Plains precipitation gradient. Letters indicate significant 1221 

differences within years. 1222 

 1223 

Fig 4. Vegetative cover (least square mean estimates with standard errors) by each ecotype in the 1224 

single ecotype plots at planting sites from years 2010-2015 across the Great Plains precipitation 1225 

gradient. Red=western KS, Orange=central KS, Green= Eastern KS, Blue = Southern Illinois. 1226 

Letters indicate significant differences within a year. 1227 

 1228 

Fig 5. Percent big bluestem dry (red) and wet (blue) ecotype cover versus the annual rainfall in 1229 

the corresponding planting locations 2014 and 2015 combined. 1230 
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Fig 6. STRUCTURE bar plot labeled by regional ecotype and by prairie. The most likely genetic 1232 

grouping solution, K = 3, is shown. Each color indicates one genetic group, and each bar 1233 

represents percentage membership to genetic group(s). Mixed membership indicates admixture. 1234 

 1235 

Fig 7. Map indicating the allele frequencies for the GA1 outlier across the 12 populations 1236 

focusing on the gradient in alleles across the climate gradient from Western Kansas to Southern 1237 

Illinois. “Short” allele is in blue, alternative “tall” allele is in red. 1238 

 1239 

Fig 8. Map showing the predicted ecotype composition of mixed ecotype plots across the 1240 

reciprocal gardens in 2014. Dry ecotype denoted in red, Mesic ecotype denoted in green, and 1241 

Wet ecotype denoted in blue.1242 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

 1243 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



gcb_14534_f1.pdf

This	article	is	protected	by	copyright.	All	rights	reservedA
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Colby, KS Hays, KS Manhattan, KS Carbondale, IL

Western Kansas Central Kansas Eastern Kansas Southern Illinois

Dry Ecotype

Mesic Ecotype

Wet Ecotype

Mixed Ecotypes

gcb_14534_f2.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a

n
u
s
c
ri
p
t



(a)

(b)

(c)

(d)

gcb_14534_f3.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



(a)

(b)

(c)

gcb_14534_f4.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



gcb_14534_f5.pdf

This	article	is	protected	by	copyright.	All	rights	reservedA
u

th
o

r 
M

a
n

u
s
c
ri
p

t



gcb_14534_f6.pdf

This	article	is	protected	by	copyright.	All	rights	reservedA
u
th

o
r 

M
a
n
u
s
c
ri
p
t



●

●

●
●

●

●

●

●

●

●

●

●

WEB
SAL

CDB REL

TAL

KON

TOW
CAR

DES

12MI
WAL

FUL

gcb_14534_f7.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



●

●
●

●

Western Kansas

Central Kansas
Eastern Kansas

Southern Illinois

Ecotype Dry Ecotype Mesic Ecotype Wet Ecotype
gcb_14534_f8.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t


	Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient
	Recommended Citation
	Authors

	Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient

