Synthesis of 2,2’-Bipyridine Via a Phosphorus Extrusion Reaction

Skyler A. Markham
Fort Hays State University, samarkham@mail.fhsu.edu

Sierra Smith
Fort Hays State University, sasmith15@mail.fhsu.edu

Zachary Araki
Southeastern Louisiana University

Benjamin F. Wicker
Southeastern Louisiana University

Bruce Atwater
Fort Hays State University, b_atwater@fhsu.edu

Follow this and additional works at: https://scholars.fhsu.edu/sacad_2019

Part of the [Chemistry Commons](https://scholars.fhsu.edu/sacad_2019/5)

Recommended Citation
Markham, Skyler A.; Smith, Sierra; Araki, Zachary; Wicker, Benjamin F.; and Atwater, Bruce, "Synthesis of 2,2’-Bipyridine Via a Phosphorus Extrusion Reaction" (2019). 2019 SACAD Winners. 5.
https://scholars.fhsu.edu/sacad_2019/5

This Poster is brought to you for free and open access by the John Heinrichs Scholarly and Creative Activities Day (SACAD) at FHSU Scholars Repository. It has been accepted for inclusion in 2019 SACAD Winners by an authorized administrator of FHSU Scholars Repository.
Synthesis of 2,2'-Bipyridine Via a Phosphorus Extrusion Reaction

Skyler A. Markham, Sierra Smith, Kaitlyn Hillery, Zachary Araki, Dr. Benjamin F. Wicker, Dr. Bruce A. Atwater

† Fort Hays State University, Department of Chemistry, Hays KS
‡ Southeastern Louisiana University, Department of Chemistry and Physics, Hammond, LA

Introduction

The formation of carbon-carbon bonds has long been a synthetic goal for chemists. This has led to the development of many novel and highly synthetically useful reactions. One of the most notable reactions to form sp² C – sp² C bonds has been the cross coupling reaction.1 Although these transformations have been very well studied and have recently produced a Nobel Prize, these transformations suffer from two drawbacks. First, they often require expensive and exotic transition metal complexes and second, the reaction conditions often require inert or anhydrous conditions. Therefore, any reactions which can substitute these reactions that do not require expensive metals or can be run under less sensitive conditions are in great demand. Our research group in conjunction with the Wicker group at Southeastern Louisiana University has developed a phosphonium species that we are exploring as a novel precursor for the formation of 2,2'-bipyridine and its derivatives. 2,2'-bipyridines and their derivatives are of increasing interest to the chemistry community due to their unique properties as ligands. However, the majority of syntheses of these species rely on the use of cross coupling reactions to form unsymmetrically substituted bipyridine species. Our protocol, once optimized, will allow us to form these species without the use of cross coupling reactions.

Synthesis of the Phosphonium Salts

To a thick-walled pressure vessel was added 1.0 equivalents of the desired phosphine species followed by 1.01 equivalents of the desired electrophile, and 2.0 equivalents of the desired anion if different from the electrophiles leaving group. The reaction mixture was sealed and heated with stirring at 180 °C for 24 – 48 hours. The reaction mixture was cooled to room temperature and the reaction mixture was dissolved in dichloromethane. The solution was then washed with approximately 1.5 grams of decolorizing carbon for 15 minutes. The reaction mixture was filtered into a round-bottom flask and the solvent was removed in vacuo. The resulting material was dissolved in either dichloromethane, methanol, acetonitrile and triturated with diethyl ether to yield the desired compound.

Synthesis of Substituted Phosphonium Salts

In conclusion, we have developed a novel phosphorus extrusion method to synthesize 2,2'-bipyridine from phosphonium salts. We have been able to slightly optimize these conditions and have proven the role that the metal salt additives and the nucleophiles play in this reaction. In addition, we have a working hypothesis of the mechanism for the transformation based upon the results we have observed (Scheme 1). Currently we are working to further optimize the reaction conditions to produce 2,2'-bipyridine. Once we have fully optimized the reaction conditions, we will begin to explore the scope of the reaction. This will be done by utilizing our substituted phosphonium salts (Table 2) to prepare unsymmetrically substituted bipyridines as well as other nitrogen containing heterocycles. Once these goals have been accomplished we will then begin synthesizing a library of phosphorus species which incorporate substituted pyridines into the phosphonium precursor to allow for the synthesis of novel polysubstituted bipyridine derivatives as well as other non-ring fused diheterocyclic species. Eventually this work will be utilized to synthesize pharmacologically active species as well as natural products.

Future Work

Acknowledgments

Funding has been provided by the following sources:
1) Peter and Pamela Werth Research Grant, FHSU
2) K-INBRE Start-Up Grant Number P20 GM103418, FHSU
3) Fort Hays State University Werth College of Science, Technology, and Mathematics Start-Up Funding, FHSU
4) Undergraduate Research Experience Grant, FHSU
5) Department of Chemistry and Physics, SLU

References

Table 1: Synthesis of unsubstituted phosphonium salts.4

Table 2: Synthesis of monosubstituted phosphonium salts..

Table 3: Metal ion screen for the extrusion of 2,2'-bipyridine.

Table 4: Nucleophile screen for the extrusion of 2,2'-bipyridine.

Table: 1

Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield
1 | Ph2P | 85% | 4 | Ph2P | 87% | 7 | Ph2P | 77% | 10 | Ph2P | 82%
2 | Ph2P | 90% | 5 | Ph2P | 85% | 8 | Ph2P | 80% | 11 | Ph2P | 50%
3 | Ph2P | 90% | 6 | Ph2P | 79% | 9 | Ph2P | 85% | 12 | Ph2P | 50%

Table: 2

Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield
1 | CoCl2·6H2O | 5 h | 20.8% | 9 | ZnCl2·4H2O | 1 h | 0.0% | 2 | LiCl | 1 h | 1.6% | 10 | MgCl2·6H2O | 1 h | 0.6% | 3 | NaCl | 1 h | 9.6% | 11 | CaCl2·2H2O | 5 h | 20%
4 | KCl | 1 h | 5.8% | 12 | SrCl2·6H2O | 5 h | 15% | 5 | FeCl3·4H2O | 1 h | 15.1% | 13 | BaCl2·2H2O | 5 h | 10% | 6 | FeCl3·6H2O | 1 h | 0.0% | 14 | NiCl2·6H2O | 5 h | 3.9%
7 | CuCl2·2H2O | 1 h | 8.3% | 15 | SnCl2·2H2O | 1 h | 0.0% | 8 | Ti(OH)2·1H2O | 5 h | 8.1% | 16 | SnCl2·5H2O | 1 h | 0.0%

Table 3: Metal ion screen for the extrusion of 2,2'-bipyridine.

Table: 3

Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield	Entry	Phosphonium Salt	% Yield
1 | Piperidine | 20.8% | 6 | DABCO | 10% | 10 | Morpholine | 35% |
2 | NaOH | 8.1% | 7 | DBU | 10% | 11 | N-Methylpiperazine | 35% |
3 | KSCN | 6.2% | 8 | Et3NH | 36% | 12 | TMP | 37% |
4 | Et3N | 35.7% | 9 | iPr2NH | 35% | 13 | Ph3P | 0.0% |
5 | EDA | 11.4% | 14 | | | | |

Table 4: Nucleophile screen for the extrusion of 2,2'-bipyridine.