Re–Os isotope geochronology of the Shangbao pyrite–flourite deposit in southeastern Hunan, South China: Evidence for multiple mineralization events and the role of crust–mantle interaction in polymetallic deposits

Cheng Cheng Huang
Guangzhou Institute of Geochemistry Chinese Academy of Sciences

Hai Feng Guo
Guangzhou Institute of Geochemistry Chinese Academy of Sciences

Jie Li
Guangzhou Institute of Geochemistry Chinese Academy of Sciences

Qiang Wang
Guangzhou Institute of Geochemistry Chinese Academy of Sciences

Chunfu Zhang
Fort Hays State University

Follow this and additional works at: https://scholars.fhsu.edu/geo_facpubs
See next page for additional authors
Part of the Geology Commons

Recommended Citation

This Article is brought to you for free and open access by the Geosciences at FHSU Scholars Repository. It has been accepted for inclusion in Geosciences Faculty Publications by an authorized administrator of FHSU Scholars Repository.
Re–Os isotope geochronology of the Shangbao pyrite–fluorite deposit in southeastern Hunan, South China: Evidence for multiple mineralization events and the role of crust–mantle interaction in polymetallic deposits

Cheng-Cheng Huang a,b, Hai-Feng Guo a, Jie Li a, Qiang Wang a,b,c,*, Chunfu Zhang d, Derek Wyman e, Gong-Jian Tang a

a State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
b University of Chinese Academy of Sciences, Beijing 100069, China
c CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
d Department of Geosciences, Fort Hays State University, Hays, KS 67601-4099, USA
e School of Geosciences, University of Sydney, NSW 2006, Australia

Received 24 March 2017; revised 12 April 2017; accepted 12 April 2017
Available online 1 June 2017

Abstract

In South China, both crustal reworking and crust–mantle interaction were important geological processes during the Paleozoic and Mesozoic eras. However, the relationships between these two processes and metal mineralization are still unknown. Here we report rhenium and osmium isotopic data for pyrite grains from a pyrite deposit associated with a granite intrusion in the Shangbao area, southeastern Hunan Province (South China). Two pyrite samples, both containing many euhedral pyrite grains, were collected from the same locality, but the samples yield distinct ages. Six euhedral pyrite grains from one sample yield an isochronal age of 279 ± 12 Ma, with an initial 187Os/188Os ratio of 0.39 ± 0.71, and Re and Os concentrations of 0.12–63.5 ppb and 2.14–185 ppt, respectively. This Early Permian age is in good agreement with the age of the strata that host the pyrite deposit. Five euhedral pyrite grains from the other sample yield an isochronal age of 75.2 ± 4.3 Ma, with an initial 187Os/188Os ratio of 0.141 ± 0.030 and Re and Os concentrations of 0.15–0.43 ppb and 1.0–39.9 ppt, respectively. If one pyrite grain with the highest 187Re/188Os and 187Os/188Os ratios is excluded, other four pyrite grains give an isochronal age of 85 ± 13 Ma. The Late Cretaceous age (75–85 Ma) is consistent with the zircon U–Pb age of the Shangbao granites (80.1 ± 0.3 Ma) to within uncertainties. Considering also the relatively lower radiogenic initial 187Os/188Os ratio of this sample, we suggest that the later stage pyrite ore was probably formed through crystallization from the magmatic hydrothermal fluids. Combined with other geological and associated magmatic data, we propose a skarn-related fluid–ore interaction process to explain the second stage of metallogenesis in the Shangbao pyrite deposit. The Early Permian pyrite ore was deposited in a brine basin with evaporites during the Early Permian. Later magmatic hydrothermal fluids originating from the Shangbao granites, which included mantle components, interacted with the strata and the Early Permian pyrite ore during the Late Cretaceous. Later magmatic hydrothermal fluids originating from the Shangbao granites, which included mantle components, interacted with the strata and the Early Permian pyrite ore during the Late Cretaceous. Skarn development caused by granite and mafic dike emplacement resulting from crust–mantle interaction explains the occurrence of two mineralization episodes at the same locality.

Copyright © 2017, Guangzhou Institute of Geochemistry. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Pyrite Re–Os geochronology; Fluid–ore interaction; Skarn; Ore deposit formation; Shangbao; South China
1. Introduction

Crustal reworking and crust–mantle interaction are considered to have played important roles in the crustal evolution of South China (Charvet, 2013; Faure et al., 2009; Li et al., 2010a; Shu et al., 2011, 2014; Xu et al., 2007; Wang et al., 2007, 2010; Yu et al., 2016). Paleozoic–Mesozoic magmatic rocks occur widely in South China (Guan et al., 2014; Huang et al., 2013; Li et al., 2010a; Xia et al., 2014; Wang et al., 2013; Yao et al., 2012; Yu et al., 2016; Zhang et al., 2015), and some magmatic rocks have been interpreted to have been related to crustal reworking or remelting or to crust–mantle interaction (Shu et al., 2011; Wang et al., 2013; Xia et al., 2014; Xu et al., 2007; Yu et al., 2016; Zhang et al., 2015). In addition, tungsten, tin, molybdenum, antimony, and bismuth deposits are abundant in South China (Mao et al., 2008, 2013; Sun et al., 2012), with their reserves ranking among the largest in the world (Sun et al., 2012). Most of these deposits are closely associated with contemporary magmatic rocks generated by crustal reworking or crust–mantle interaction (Sun et al., 2012; Mao et al., 2011; Hu et al., 2012; Zaw et al., 2007; Zhou et al., 2006). However, whether crustal reworking or crust–mantle interaction produced the metal mineralization remains unknown. To constrain the mineralization ages, most previous research has concentrated on the veins or host rocks (e.g., magmatic rocks) which were spatially related to the ore deposits. But these methods can only provide indirect rather than direct information on the mineralization ages of the metal deposits. In fact, the mineralization age(s) and, in particular, the origin(s) of the metal cannot be determined by this approach.

The Re–Os isotope system has been widely accepted as a chalcophile system, which could be the "silver bullet" for resolving the mineralization age(s) and the origin(s) of metal deposits (Herr and Merz, 1955). Due to their siderophile and chalcophile nature, Re and Os are incorporated directly into the Re–Osisoore deposit. In addition, tungsten, tin, molybdenum, antimony, and bismuth deposits are abundant in South China (Mao et al., 2008, 2013; Sun et al., 2012), with their reserves ranking among the largest in the world (Sun et al., 2012). Most of these deposits are closely associated with contemporary magmatic rocks generated by crustal reworking or crust–mantle interaction (Sun et al., 2012; Mao et al., 2011; Hu et al., 2012; Zaw et al., 2007; Zhou et al., 2006). However, whether crustal reworking or crust–mantle interaction produced the metal mineralization remains unknown. To constrain the mineralization ages, most previous research has concentrated on the veins or host rocks (e.g., magmatic rocks) which were spatially related to the ore deposits. But these methods can only provide indirect rather than direct information on the mineralization ages of the metal deposits. In fact, the mineralization age(s) and, in particular, the origin(s) of the metal cannot be determined by this approach.

The Re–Os isotope system has been widely accepted as a chalcophile system, which could be the “silver bullet” for resolving the mineralization age(s) and the origin(s) of metal deposits (Herr and Merz, 1955). Due to their siderophile and chalcophile nature, Re and Os are incorporated directly into sulfide phases. Therefore, the Re–Os geochronometer can be used for dating the formation age of ore samples directly, and the Re–Os age will represent the true mineralization age of an ore deposit. In addition, Re is more highly concentrated in crustal rocks than Os when compared to the mantle, because Re is more incompatible than Os when compared to the mantle, because Re is more incompatible than Os when compared to the mantle, because Re is more incompatible than Os when compared to the mantle, because Re is more incompatible than Os when compared to the mantle, because Re is more incompatible than Os when compared to the mantle, because Re is more incompatible than Os when compared to the mantle. Compared to molybdenite, the high concentrations of Re and Os (at the ppt level) in these minerals is no longer a limitation. Compared to molybdenite, the high level of common Os in pyrite gives it an important advantage in tracing the origin of metallic minerals.

The Shangbao fluorite crystal deposit, which is associated with the tourmaline-bearing two-mica granite intrusion, is world-renowned for its gigantic pyrite and fluorite crystals. It is also an example of the polymetallic deposits in South China, which include Nb–Ta, W–Sn, and sulfides ore deposits (Lei et al., 2009; Chen et al., 2003). Previous studies have reported the mineral and inclusion characteristics of the Shangbao deposit (Mu et al., 1982; Tu, 1984). Until now, however, no studies have been undertaken on mineralization age and the source of metals has not been established. Consequently, the genetic mechanism responsible for the deposit remains unclear. In this study, we chose two samples with fresh, euhedral, pyrite grains in order to analyze their Re–Os isotope compositions and constrain the mineralization age(s) and origin(s) of the ore. On the basis of these results and other geological and associated geochemical data, we propose that a two-stage process, that includes late fluid–ore interaction, can account for the metallogenesis of the Shangbao pyrite deposit.

2. Geological setting

South China is made up of the Yangtze Block to the northwest and the Cathaysia Block to the southeast (Fig. 1a), and the Hunan Province is located in the central region of South China, at the junction of the Yangtze and Cathaysia Blocks. The Shangbao deposit lies in the southeast part of Hunan Province (Fig. 1a), and is near the Shi-Hang Zone granites (Gilder et al., 1996). The Shi-Hang Zone was first identified by Gilder et al. (1996), and was defined as a belt of granites that are characterized by high concentrations of Sm (>8 ppm) and Nd (>45 ppm), high tNd(t) (>−8), but low εNd (<1.5 Ga) and low initial 87Sr/86Sr ratios (<0.710) (Chen and Jahn, 1998; Zhou et al., 2006; Jiang et al., 2008).

Numerous faults and folds occur within the southeast of Hunan Province. The structural features of the Shangbao deposit are dominated by the folding and two faults (Chenzhou-Linwu [CZLW] and Wuhua–Xinshao [WHXS] Faults) (Fig. 1b). Previous studies suggested that the Shangbao...
The anticline was formed by Indosinian (or Triassic) tectonic activities (Lei et al., 2009). The core of the anticline is made up of Upper Carboniferous dolomite, while the limbs consist of Lower Permian shale and limestone, with dip angles varying from 35° to 60°. The core and the two limbs are separated by two parallel normal faults, which have a near-NS strike and extend for about 5 km long.

The Shangbao deposit, consisting of nearly pure massive pyrite ore, crops out on the limbs of the anticline. The massive sulfide ores are hosted by the Permian strata, and consist of pyrite grains with a cubic crystal shape (Fig. 3), and rare magnetite grains. Pyrite crystals in the Shangbao deposit are well known as mineral specimens, given that they range in size from several millimeters to about 1 m. The pyrite grains used for this study were about 1 cm in size.

The Shangbao deposit is associated with the Shangbao diabase–granite intrusion. The Shangbao pluton has an outcrop area of less than 2 km², occurs near the core of the
anticline, and consists of tourmaline-bearing two-mica granites and diabase dikes (Fig. 2). These dikes have widths ranging from 5 m to 50 m, and their lengths vary from 30 m to 3000 m. The mafic dikes cut through the granite intrusion with steep dip angles ranging from 75° to 90°. The Shangbao granites were emplaced in the Late Cretaceous (zircon U–Pb age: 80.1 ± 0.3 Ma) (Guo, 2013; Guo et al., 2014) and generated skarns in the limestones.

3. Sampling and analytical procedure

3.1. Sampling

Pyrite samples, which contained aggregates of many grains, were collected from the Shangbao sulfide ore deposit, which is located in the Leiyang City, Hunan Province. Individual fresh euhedral pyrite grains were separated from two samples (11SHB01 and 11SHB03) and selected for Re—Os isotope analyses (Fig. 3b). The sample 11SHB03 contains more dolomites in the gap between some pyrite grains than the sample 11SHB01. A total of eleven grains from two samples were picked out and crushed without contacting any steel and tungsten equipment. All mineral powders were prepared by using an agate mortar and pestle set, in order to avoid potential Re contamination. Taking into account the low concentrations of Re and Os in pyrite, coarse grains (diameter > 5 mm) were selected for the Re—Os isotope analyses.

3.2. Analytical method

Re—Os isotopic analyses were carried out in the State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLaBIG GIG CAS). About 0.8–0.9 g of powder from each sample was weighed and placed in a Carius tube. Appropriate amounts of the individual Re and Os spike solutions were accurately weighed and carefully added to each sample tube. While the tube was chilled in a bath of a freezing mixture consisting of liquid N2 and ethanol, 3 ml of concentrated HCl and 9 ml of concentrated HNO3 were successively added into the tube. The Carius tube was then carefully sealed and heated in an oven at 220 °C for 24 h. After decomposition, the glass tubes were again chilled in a bath containing a freezing mixture of liquid N2 and ethanol and then opened. After thawing, the contents were poured into 20 ml centrifugation tubes, and after the residual solids were precipitated through centrifugation, the supernatant solutions were transferred into 30 ml PFA vials and subjected to Os solvent extraction by CCl4 followed by back-extraction into concentrated HBr. The detailed solvent extraction procedure and conditions were described in prior studies (Cohen and Waters, 1996; Pearson and Woodland, 2000). The extracted Os fraction was further purified by microdistillation (Birck et al., 1997) and was then ready for N-TIMS measurement. Osmium was loaded in HBr on 99.999% Pt filaments (H.Cross Company, USA), and Ba(OH)2 emitter solution was loaded on top of the sample to enhance ion emission. Os isotope ratios were measured as the trioxide negative ion (OsO$_3^-$) on the Thermo Finnigan Triton N-TIMS in negative ion mode, and the Re concentration were measured by Inductively Coupled Plasma Mass Spectrometry (ICP–MS). The details of chemical separations and measurements are described elsewhere (Li et al., 2010b, 2015).

Total procedural blanks (TPB) for this technique were 0.32 ± 0.14 pg with the 187Os/188Os ratio of 0.284 ± 0.049 ($n = 2, 1σ$) on average for Os and between 6 and 8 pg for Re. Blank contributions were typically (contribution for sample with lowest concentration in brackets) < 1% (5%) for Re and <3% (37%) for Os, respectively.

The isochronal age was calculated by using the ISOPLOT software (Version 3.7, Ludwig, 1999), and a 187Re decay constant of 1.666 × 10$^{-11}$ year$^{-1}$ (Smoliar et al., 1996).

4. Analytical results

Eleven grains from two pyrite samples were analyzed and the data are listed in Table 1. The results reveal that the two pyrite samples have different Re—Os isotopic features and yield two distinct isochronal ages (Fig. 4). Both of the samples show a very wide range of 187Re/188Os ratios (from 113 to 441,365, and from 18 to 2503, respectively).

Six euhedral pyrite grains from Sample 11SHB01 yield an isochronal age of 279 ± 12 Ma. The Re and Os concentrations vary greatly from 120 to 63,507 ppt and from 2.14 to 185 ppt, respectively. The 187Re/188Os and 187Os/188Os ratios range from 113 to 441,365 and from 0.66 to 2042, respectively. The initial 187Os/188Os ratio is 0.39 ± 0.71 (2σ, $n = 6$). The cause for the uncertainty will be discussed below.

Five euhedral pyrite grains from Sample 11SHB03 give an isochronal age of 75.2 ± 4.3 Ma (Fig. 4). If one pyrite grain with the highest 187Re/188Os and 187Os/188Os ratios is excluded, the other four pyrite grains give an isochronal age of 85 ± 13 Ma (Fig. 4). Compared to the first stage (~279 Ma) pyrite sample 11SHB01, Sample 11SHB03 has relatively narrow ranges of Re and Os concentrations which vary from 150 to 430 ppt and from 1.0 to 39.9 ppt, respectively. The 187Re/188Os and 187Os/188Os ratios are also relatively homogenous except for one point. These isotopic characteristics suggest that most Os was sourced from mantle components derived from either the Shangbao granites or the associated coeval OIB-type mafic dikes (Guo, 2013). The initial 188Os/188Os ratio of the sample is 0.141 ± 0.030 (2σ, $n = 5$), and the much lower uncertainty suggests that the result is suitable for assessing mineralization age and metallogenic processes at the deposit.

5. Discussion

5.1. Episodes of mineralization

The pyrite grains from two samples of the Shangbao deposit yield two distinct isochronal ages (Fig. 4). The first stage pyrites were formed at the Early Permian (ca. 279 Ma), which is consistent with that of the strata in which the pyrite deposit was hosted. The late stage pyrites were generated in the Late
Fig. 2. Regional geological map of the Shangbao area.
Cretaceous (75–85 Ma), which is consistent with the zircon U–Pb age (80.12 ± 0.34 Ma) of the associated Shangbao granites (Guo, 2013; Guo et al., 2014). These age data suggest that there are two episodes of mineralization in the Shangbao area.

5.2. Source of metals

The pyrite grains formed during the early stage exhibit different Re and Os isotopic compositions from those formed in the late stage. The early pyrite grains exhibit more variable contents of Re and Os and a wider range of \(
\frac{\text{Re}}{\text{Os}}\) ratios than those of the late pyrite grains. The variable compositions of pyrite grains from the same sample show vast differences in Re and Os concentrations, which were caused by “nugget effects”. Such effects may be due to the heterogeneous distribution of the various sulfide populations in whole rock (Alard et al., 2002), because Re and Os might be concentrated in micro-phases that are not equally distributed. Alternatively, the Re and Os may have been derived from a rapidly evolving fluid, where the concentrations are continually changing as different minerals precipitate (Freydier et al., 1997). These effects are advantageous for determining the Re–Os geochronology of sulfides.

The initial \(\frac{\text{Re}}{\text{Os}}\) ratio of Sample 11SHB01 is 0.39 ± 0.71 (2\(\sigma\), \(n = 6\)), which is much more radiogenic than chondrite \(\left(\frac{\text{Re}}{\text{Os}}\right)_{\text{chondrite}} = 0.125\) at 279 Ma (Meisel et al., 1996). The radiogenic initial \(\frac{\text{Re}}{\text{Os}}\) ratio may indicate a significant contribution from felsic crust, particularly since crustal melts have low Os concentrations compared to mantle melts (Freydier et al., 1997). For example, the Re/Os vs. common Os diagram (Fig. 5) displays a wide field for Sample 11SHB01 (one point was excluded for its high proportion of radiogenic Os and extremely low common Os concentration like molybdenite) that is not entirely consistent with the mantle melts array. The relatively large uncertainty comes from the following sources:

1. The low concentrations of common Os and abundant radiogenic Os components may have resulted in an underestimate of the analytical error. Sample 11SHB01 has low common Os concentrations and high proportions of radiogenic Os components (accounting for 8–99.6% of total Os) compared to Sample 11SHB03 (usually lower than 10%). These two factors allow analytical blank errors to make much larger contributions to uncertainties in the \(\frac{\text{Os}}{\text{Os}}\) ratios and Sample 11SHB01 does display a wide range of \(\frac{\text{Os}}{\text{Os}}\) ratios (0.0332–1.3185),

Table 1

<table>
<thead>
<tr>
<th>Sample number</th>
<th>ReTotal (ppt)</th>
<th>OsTotal (ppt)</th>
<th>(\frac{\text{Re}}{\text{Os}}) Ratio</th>
<th>(\frac{187\text{Re}}{188\text{Os}}) Ratio</th>
<th>(\frac{\text{Os}}{\text{Os}}) Common (ppt)</th>
<th>Re/Os ratio</th>
<th>TMa</th>
</tr>
</thead>
<tbody>
<tr>
<td>11SHB03-1</td>
<td>216</td>
<td>14</td>
<td>4.49</td>
<td>0.02</td>
<td>0.4716</td>
<td>0.0045</td>
<td>242</td>
</tr>
<tr>
<td>11SHB03-2</td>
<td>432</td>
<td>13</td>
<td>39.9</td>
<td>1.5</td>
<td>0.1939</td>
<td>0.0022</td>
<td>52.6</td>
</tr>
<tr>
<td>11SHB03-3</td>
<td>179</td>
<td>8</td>
<td>38.2</td>
<td>1.7</td>
<td>0.1548</td>
<td>0.0023</td>
<td>18.8</td>
</tr>
<tr>
<td>11SHB03-4</td>
<td>213</td>
<td>6</td>
<td>8.56</td>
<td>0.37</td>
<td>0.2994</td>
<td>0.0072</td>
<td>123</td>
</tr>
<tr>
<td>11SHB03-5</td>
<td>354</td>
<td>10</td>
<td>0.96</td>
<td>0.01</td>
<td>3.260</td>
<td>0.050</td>
<td>2503</td>
</tr>
<tr>
<td>11SHB01-1</td>
<td>340</td>
<td>21</td>
<td>15.49</td>
<td>0.61</td>
<td>0.658</td>
<td>0.021</td>
<td>113</td>
</tr>
<tr>
<td>11SHB01-2</td>
<td>9517</td>
<td>141</td>
<td>45.48</td>
<td>0.25</td>
<td>12.85</td>
<td>0.15</td>
<td>2681</td>
</tr>
<tr>
<td>11SHB01-3</td>
<td>121</td>
<td>3</td>
<td>2.14</td>
<td>0.02</td>
<td>1.689</td>
<td>0.037</td>
<td>328</td>
</tr>
<tr>
<td>11SHB01-4</td>
<td>194</td>
<td>8</td>
<td>2.86</td>
<td>0.01</td>
<td>1.908</td>
<td>0.021</td>
<td>402</td>
</tr>
<tr>
<td>11SHB01-5</td>
<td>63,507</td>
<td>874</td>
<td>185</td>
<td>3</td>
<td>2042</td>
<td>54</td>
<td>441,365</td>
</tr>
<tr>
<td>11SHB01-6</td>
<td>3138</td>
<td>59</td>
<td>16.92</td>
<td>0.08</td>
<td>11.84</td>
<td>0.11</td>
<td>2258</td>
</tr>
</tbody>
</table>

Note: 1. Os\(_\text{Total}\) = Os\(_\text{Common}\) + \(187\text{Os}\)\(_\text{Total}\) – \(187\text{Os}\)\(_\text{Common}\), where \(187\text{Os}\)\(_\text{Common}\) = Os\(_\text{Common}\) \times 0.01926. 2. Os in Re/Os is common Os, Common Os and common \(187\text{Os}\) are calculated according to the Nier value. 3. \(\text{Os}\) decay constant = \(1.666 \times 10^{-11}\) \(\text{y}^{-1}\) (Smoliar et al., 1996); all data here are blank-corrected.

Fig. 3. Photographs of pyrite samples. (a) Massive sulfide ore, Pyrite (Py) + Calcite (Cal) + Quartz (Qz). (b) Single euhedral pyrite grains separated from (a).
Fig. 4. Re–Os isochronal ages for pyrites from the Shangbao deposit. (a) The isochronal age of Sample 11SHB01. (b) The isochronal age of Sample 11SHB03.
calculated by formula $^{187}\text{Os}/^{188}\text{Os}}_i = (^{187}\text{Os}/^{188}\text{Os})_m - (^{187}\text{Re}/^{188}\text{Os}) * (e^{2\Delta t} - 1)$.

(2) The Re–Os system may have been disturbed slightly by later magmatic event, or some other process that caused a redistribution of Re and radiogenic Os. There is, however, no microscopic evidence of supergene alteration because all of the chosen euhedral pyrite grains had fresh unoxidized surfaces and had no inclusions. According to Brenan et al. (2000), the pyrite grains at millimeter-size can undergo core disturbances by a diffusive exchange with an external Os reservoir, and the process could occur for at least 10 Ma at 500 °C. The radii of all pyrite grains in this research are about 5 mm, however, which are large enough to resist supergene diffusive exchanges. Stein et al. (1998) and Selby and Creaser (2001) suggested that the Re–Os systematics are unaffected by post-ore processes. Selby and Creaser (2001) also concluded that the Re–Os system was undisturbed by low to moderately saline (1–15 wt% NaCl equiv.) hydrothermal fluids. Selby et al. (2009) worked on the Ruby Creek deposit, and their results show that the Re–Os systematics of pyrite, chalcopyrite, and bornite were unaffected by greenschist facies metamorphism. All these data indicate that the Re–Os isotope system is very resistant to later disturbances. The Re and Os concentrations of the late pyrite grains are much lower than the early pyrite grains in the Shangbao ore deposit, and it seems that Re–Os isotope system of the sampled early pyrite grains did not undergo later metamorphic disturbances.

(3) A complex precipitation process in a syn-sedimentary deposit may contribute to large uncertainties. Table 1 displays the heterogeneous Re–Os isotopic features of Sample 11SHB01, although the Re–Os age is consistent with that of the strata that host the pyrite deposit. It is reasonable to infer that the early pyrite grains are a type of syn-sedimentary deposit (Feng et al., 2009). In addition, no geological data suggest that a magmatic event was responsible for the formation of the early pyrite grains. Regional geological data also show that between the Neoproterozoic to the Early Triassic, the entire area was a shallow sea–coastal region where precipitated sedimentary limestone and (or) coal bearing formations were continually and steadily formed (Fig. 2). Clearly, a formation model for the syn-sedimentary deposit may be complicated by the numerous potential Os sources for the deposit.
Fig. 6. Metallogenic model of the Shangbao pyrite deposit (modified after Kemp et al., 2007). (a) The Early Permian pyrite ore was formed by syn-sedimentary precipitation. (b) Emplacement of granite and mafic dikes in the core of the Shangbao anticline provided an ideal location for the precipitation of late stage pyrite grains in a skarn environment.
It is difficult to determine how metals were initially introduced to the deposit because the strata were heavily reworked by late stage skarn formation caused by the granite. There are two main types of models for the syn-sedimentary deposit formation: (1) the theory of magmatic ore genesis by submarine exhalation on the seafloor is now widely accepted (Guo et al., 2011; Feng et al., 2009; Gu et al., 2012; Han and Hutchinson, 1989; Gu and Xu, 1986; Pasava et al., 1996; Lott et al., 1999). Magmatic hydrothermal fluids rise through fractures and veins and thus take metal materials to the surface. (2) Metals are leached from the country rocks or an igneous Os reservoir by meteoric water or seawater or that has been heated and modified during convection to become a hydrothermal fluid, or a mixture of these types of fluids (Mathur et al., 1999, 2000; Munha and Kerrich, 1980; Kesler et al., 2002; Kirk et al., 2002; Freydier et al., 1997). Re and Os can be scavenged efficiently by anoxic sea-bottom sediments (Ravizza et al., 1991), and under such anoxic environments, which generally have a low sedimentation rate, metal element concentrations in some black shales can be enriched compared to seawater by factors of 10^3 to 10^6 (Holland, 1979). Sulfides precipitated by this process usually have the same initial 187Os/188Os ratios as the seawater, while the present day average seawater has 187Os/188Os = 1.04 \pm 0.04 (Sharma et al., 1997).

Because no magmatic sources as required for Model 1 are known, and the initial 187Os/188Os ratios are much less radiogenic than seawater, we propose that Model 2 is more plausible for the formation of the Early Permian pyrite grains.

Relatively narrow ranges of Re and Os isotopic characteristics indicate an isotopically homogeneous source (Mathur et al., 2000, 2005; Freydier et al., 1997). Combined with an age consistent with the Shangbao granites, the late stage pyrite grains were probably formed by magmatic hydrothermal fluids. The (187Os/188Os)$_i$ ratios have a limited range from 0.128 to 0.168, with an average of 0.141 \pm 0.030 (Fig. 4). This value is basically close to the chondrite at 75 Ma (187Os/188Os = 0.1296) (Meisel et al., 1996), which indicates that mantle materials played a dominant role in the formation of the late stage pyrite grains. The Re/Os vs. common Os diagram (Fig. 5) also displays a trend that is approximates the array for mantle melts. In addition, the Shangbao pyrite ore deposit is closely associated with the contemporary Shangbao granites and coeval OIB-type mafic dikes (Guo, 2013) that represent a plausible source for mantle components in the metallic deposit.

5.3. Geological implications

Fluid—ore interaction can explain why two mineralization episodes are identified in close association. Combining the new data with regional geological observations, we infer the Early Permian pyrite grains were formed by syn-sedimentary precipitation (Fig. 6b). Since the Early Paleozoic, the whole region of South China was a passive continental margin which was covered by seawater (Fig. 3) (Li and Li, 2007; Li et al., 2012). Meteoric fluids from continental sources and hydrothermal fluids that leached metals from mafic intrusions or seafloor basalts of early period would have precipitated synchronously within sedimentary strata in this setting. The initial 187Os/188Os ratio reveals a mantle-dominated metal source but with a significant contribution from crustal sources during the ore formation process, which is consistent with our results.

The tectonic setting of the SCB gradually changed from compressional to extensional during the Mesozoic. This phenomenon was related to either the subduction of the Paleo-Pacific oceanic plate beneath the Chinese continent (Xu and Xie, 2005; Zhou et al., 2006; Jiang et al., 2009), or an intracratonic rifting (Fan et al., 2003; Li et al., 2003, 2004; Wang et al., 2003). This lithospheric extension continued from the Jurassic to the Cretaceous, and increased mantle—crust interaction (i.e., emplacement of mantle magmas and higher heat flow) is well established for this interval (Jiang et al., 2011; Liu et al., 2012; Li and Li, 2007; Xu et al., 2007; Wang et al., 2003, 2008; Li et al., 2012). The local tectonic setting of southeastern Hunan Province was consistent with the larger-scale tectonic environment of South China (Fig. 2). An association of graben basins and deep fractures implies extension of the lithosphere. The CZLW-fault was reactivated in the Triassic, and evolved into a strike-slip fault in the Jurassic—Cretaceous, and finally developed into a graben basin (Wang et al., 2003, 2008). A steeper subduction dip angle and the rollback of the subducted Pacific plate in the Late Cretaceous are considered to have been responsible for the formation of vast volumes of coeval granites (Li and Li, 2007; Zhou et al., 2006; Jiang et al., 2009; Li et al., 2012). The OIB-like geochemical features of the Late Cretaceous Shangbao mafic dikes intruding the granite pluton suggest that they were derived from asthenospheric mantle where upwelling was triggered by the crustal extension (Guo, 2013). The rising basaltic magmas provided the heat source for crustal melting. Due to the heat of magmas and metasomatism induced by metal-carrying magmatic hydrothermal fluids, the early strata were strongly recrystallized, as evidenced by skarn development around the pluton. Pyritization is associated with the skarn-forming event. The in situ magmatic hydrothermally precipitated pyrite grains caused the phenomenon of two stage pyrite symbiosis in the same area. The core of the Shangbao anticline provided an ideal space for the precipitation of late stage pyrite grains. The crystal deposit was formed under a fluoride fluid enrichment conditions (Fig. 6a).

The Re—Os isotope data of the Shangbao pyrite deposit suggest that mantle materials have made significant contributions to the formation of Paleo- to Mesozoic polymetallic deposits in South China. Multiple episodes of mineralization are associated with widespread Mesozoic magmatic events and, in at least some cases, they have overprinted earlier syn-sedimentary mineralization.

6. Conclusions

Rhenium and osmium elemental and isotopic data have been obtained for the Shangbao pyrite deposit in the southeastern Hunan Province. The two pyrite samples collected
from the same locality yield distinct ages. One sample yields an isochronal age of 279 ± 12 Ma and an initial 187Os/188Os ratio of 0.39 ± 0.71, the other yields an isochronal age of 75.2 ± 4.3 Ma or 85 ± 13 Ma, with an initial 187Os/188Os ratio of 0.141 ± 0.030.

The first stage pyrite grains were formed synchronously with sedimentary strata from a mantle-dominated metal source, but also contain a component leached by meteoric water or hydrothermal fluids that contained a significant crustal contribution. The late stage pyrite grains were formed by crystallization from the magmatic hydrothermal fluids during skarn formation in local limestones. The ore-forming metal was almost entirely derived from the mantle with only slight contamination from crustal sources. This result implies a significant contribution of mantle materials to Mesozoic polymetallic deposit formation in South China.

 Fluid-reprocessing during skarn formation increased the mantle contribution to a younger ore-forming episode compared to the syn-sedimentary event. Crust–mantle interaction in the form of granite and dike emplacement at shallow crustal levels ultimately explains the existence of two mineralization episodes at a single locality. Rollback of the subducted Pacific Plate in the Late Cretaceous caused a widespread extensional regime in the South China Block. Enormous volumes of hot mantle magmas ascended into the shallow crust, which provided large amounts of heat and materials for the formation of both granites and polymetallic mineralization in South China.

Acknowledgments

We would like to thank Editor-in-Chief Professor Weidong Sun, and two anonymous reviewers for their very constructive and helpful reviews. We appreciate the assistance of Professor Ji-Feng Xu and Drs. Gui-Qing Wang and Pei-Pei Zhao for Re–Os isotope analyses. Financial support for this research was provided by the DREAM Program of China (No. 2016YFC0600407), the Key Program of the Chinese Academy of Sciences (QYZDJ-SSW-DQC026), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03010600), the National Natural Science Foundation of China (Nos. 41630208 and 41421062), the Talent Project of Guangdong Province (2014TX012079), and GIGCAS 135 project 135TP201601. This is contribution IS-2585 from GIGCAS.

References

Guo, H.F., 2013. Petrogenesis of Late Cretaceous Tournaline-bearing Two-

Guo, W.M., Lu, J.J., Jiang, S.Y., Zhang, R.Q., Qi, L., 2011. Re-Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province: geochronological evidence for sub-

Hauri, E., Hart, S., 1993. Re–Os isotope systematic of HIMU and EMII

