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Abstract
Soybean [Glycine max (L.) Merr.] is a globally important crop due to its valu-

able seed composition, versatile feed, food, and industrial end-uses, and consistent

genetic gain. Successful genetic gain in soybean has led to widespread adaptation and

increased value for producers, processors, and consumers. Specific focus on the nutri-

tional quality of soybean seed composition for food and feed has further elucidated

genetic knowledge and bolstered breeding progress. Seed components are historical

and current targets for soybean breeders seeking to improve nutritional quality of

soybean. This article reviews genetic and genomic foundations for improvement of

nutritionally important traits, such as protein and amino acids, oil and fatty acids,

carbohydrates, and specific food-grade considerations; discusses the application of

advanced breeding technology such as CRISPR/Cas9 in creating seed composition

variations; and provides future directions and breeding recommendations regarding

soybean seed composition traits.

Abbreviations: ANF, antinutritional factor; BBTI, Bowman–Birk trypsin inhibitor; GMO, genetically modified organism; GWAS, genome-wide association
study; HOLL, high oleic, low linolenic; KASPar, kompetitive allele-specific PCR; KTI, Kunitz trypsin inhibitor; LG, linkage group; MAS, marker-assisted
selection; ME, metabolizable energy; MG, maturity group; NIRS, near-infrared reflectance spectroscopy; PUFA, polyunsaturated fatty acid; QTL, quantitative
trait locus; QTN, quantitative trait nucleotide; RFLP, restriction fragment length polymorphism; RFO, raffinose family oligosaccharide; SAA,
sulfur-containing amino acid; SNP, single-nucleotide polymorphism; SSR, simple sequence repeat; TI, trypsin inhibitor; UAV, unmanned aerial vehicle.
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1 INTRODUCTION

Soybean [Glycine max (L.) Merr.] is a globally important
crop due to its valuable seed components and represents
the largest and most concentrated segment of global agri-
cultural trade (Gale et al., 2019). The crop is cultivated on
roughly 6% of the world’s arable land and has been referred
to as the “golden miracle bean” due to its unique seed com-
position, accounting for approximately 70% of total protein
meal and over 60% of total global oilseed production (Hart-
man et al., 2011; United States Department of Agriculture,
2022; Vieira & Chen, 2021). In 2021, world soybean pro-
duction totaled 371.7 million metric tons (Mt) with 81.2%
of production accounted by Brazil (134.9 Mt), the United
States (120.7 Mt), and Argentina (46.2 Mt) (FAO, 2023).
The international demand for soybean is driven by versatile
feed, food, and industrial end-use purposes provided by a
unique seed composition profile. This demand is also highly
influenced by China, which purchases 65% of the global
soybean supply (De Maria et al., 2020; Gale et al., 2019).
Additionally, when compared to other world food crops, soy-
bean had the highest yearly percentage increase in production
area over from the 1970s to the 2010s and has continued
to grow in global harvested area and production quantities
(FAO, 2023; Hartman et al., 2011). Feed and food consump-
tion typically influences the overall production of soybean,
while industrial purposes have historically garnered added
value through by-products. Soybean seeds are composed of
five main seed components: protein, oil, carbohydrates (solu-
ble and insoluble), ash, and water (often displayed as moisture
content). Soybean meal (soymeal; protein, carbohydrates, and
ash combined) accounts for the majority of seed value through
nutritional elements, energy content, and feed conversion, and
1 Mt of soybeans can produce roughly 79,000 kg of meal
(USB, 2022; USSEC, 2022). For this reason, most soybeans
are crushed to separate the meal from other components, such
as oil, to extract the highest value.

Soymeal is valuable because of its high utility as a livestock
feed ingredient with all nine essential amino acids present:
histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys),
methionine (Met), phenylalanine (Phe), threonine (Thr), tryp-
tophan (Trp), and valine (Val) (Phillips, 1993; Qin et al.,
2022). This protein quality also provides nutritional value
for humans across many cultures. First cultivated in China
around 1100 AD, soybean has been a protein staple in many
Asian cuisines and remains well-recognized for foods such as
tofu and edamame, health benefits, and an increasing interest
in plant-based proteins (Chang et al., 2015; Messina, 1999;
Messina & Messina, 2010). After its North American intro-
duction in 1765, soybean did not experience large production
growth until the early 20th century from a substantial demand
increase due to World War II lubricant and oil needs (Chang
et al., 2015; Hymowitz & Harlan, 1983). Globalization has

Core Ideas
∙ Soybean genetics are the foundation for improv-

ing nutritional composition.
∙ Soybean genomics can be harnessed to

improve nutritional composition.
∙ Soybean breeding has and will continue to improve

nutritional composition.

provided a platform for international trade that introduced
soyfoods into Western cultures and diets, allowing more peo-
ple worldwide to access soyfoods and to understand their
various health and nutritional benefits. In recent years, var-
ious soyfood products have surged into the market and can be
divided into nonfermented and fermented soyfoods (Figure 1).
The versatility of soy-based products has continued to grow
alongside technological innovations and is a key to current
demand. Subsequently, plant breeders adopted and continue
to incorporate emerging methods and technologies such as
CRISPR/Cas9 for varietal development to meet fluctuating
environmental, economic, and preference-based targets for
soybean seed composition.

To assist soybean researchers in expanding toolsets for
seed composition improvement, this review seeks to (1) com-
pile traits and genetic foundations for nutritionally added
value to seed composition important for feed and food; (2)
highlight significant genes, quantitative trait loci (QTLs),
and other genetic markers for important seed composition
traits; and (3) provide future directions and breeding rec-
ommendations regarding seed composition traits in soybean.
Additionally, this review may function as a comprehensive
knowledge resource for nutritional improvements of soybean
seed composition.

2 PROTEIN AND AMINO ACIDS

2.1 Introduction to protein and amino acids

Legumes are an excellent source of high-quality protein that
contain essential amino acids. Among the legumes, soybean
is considered a source of complete protein, containing all
nine essential amino acids, and soybean seeds contain approx-
imately 40% protein and 20% oil on a dry weight basis
(Banaszkiewicz, 2011). In the western hemisphere, soybean
is mainly processed into soymeal for animal feed, as the high
concentration of protein (44%–48%) and highly digestible
amino acids are an excellent source of feed for the poultry and
swine industries. Moreover, soymeal provides amino acids
(Lys, Thr, and Tyr) that are deficient in corn, sorghum, and
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F I G U R E 1 Processing methods of fermented and nonfermented soyfoods (created with BioRender.com).

other cereal grains fed to poultry and swine (Cromwell, 1999;
Dozier & Hess, 2011; Pettigrew et al., 2002). The US domes-
tic market demands dehulled soymeal with 47%–49% protein
concentration at 12% moisture (Bosaz et al., 2019; Guinn,
2002). The protein threshold for producing 48% soymeal pro-
tein is approximately 34%–35% seed protein at 13% moisture
depending on the oil concentration (USB, 2018).

Protein is required in both human and animal diets to supply
essential amino acids. Thus, the blend of amino acids deter-
mines the nutritional value of soybean protein (Friedman &
Brandon, 2001; Thakur & Hurburgh, 2007; Warrington et al.,
2015; Wilcox & Shibles, 2001). Soymeal, which is prepared
after extracting oil, is a rich and inexpensive source of proteins
with balanced amino acids and is ideal for use in most animal
feeds (Krishnan & Jez, 2018). As shown in Figure 2, amino
acids have complex and interconnected biological pathways
that encourage the direct consumption of protein containing
an ideal amino acid profile. Although soybean seed is packed
with all nine essential amino acids, three amino acids—Met,
Thr, and Lys—are present in reduced quantities (Soy Stats,
2022). Cysteine (Cys) is also deficient, but it is considered
“conditionally” essential because animals can convert Met to
Cys through the irreversible reaction of cystathionase syn-
thase (Ball et al., 2006). Since monogastric animals such as
poultry and swine cannot produce these amino acids naturally,

these amino acids must be supplemented in soymeal-based
diets with synthetic amino acids at a large expense (∼100 mil-
lion annually) for animal producers (Nill, 2016; Pfarr et al.,
2018; Wilcox & Shibles, 2001). Baker et al. (2011) sug-
gest that high-protein soymeal has a greater concentration
of amino acids than conventional soymeal. Therefore, high-
protein soymeal can provide increased quantities of digestible
amino acids, which could solve nutritional deficiency and
feeding cost problems.

2.2 Genetic studies for protein and amino
acids

There have been significant efforts made for the identification
of protein and amino acid QTLs through biparental conven-
tional mapping as well as genome-wide association studies
(GWASs). There are currently 248 QTLs from biparental
mapping for protein, including 16 cq-QTLs; cq-QTLs are the
confirmed QTLs that are approved by the soybean genetics
committee (Grant et al., 2010; Soybase.org, 2022) (Table S1).

The first attempt to map QTLs for high protein was made
in 1992 through restriction fragment length polymorphism
(RFLP) mapping in a biparental cross developed from a G.
max experimental line (A81-356022) and Glycine soja plant
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F I G U R E 2 The amino acid biosynthesis pathways (created with BioRender.com).

introduction line (PI 468916) (Diers et al., 1992). This study
indicated a positive association of high protein with the G.
soja source. Many subsequent studies for QTL mapping have
reported and confirmed chromosome (Chr.) 20 (linkage group
[LG] I) and Chr. 15 (LG E) linked to high-protein alleles using
different populations and environments (Bolon et al., 2010;
Hwang et al., 2014; Jun et al., 2008; Patil et al., 2017; Vaughn
et al., 2014; Wang et al., 2015).

Previous studies that used biparental segregating popula-
tions have identified QTLs associated with 15 amino acids
in soybean seeds (Fallen et al., 2013; Khandaker et al.,
2015; Panthee et al., 2006; Warrington et al., 2015). Using
313 diverse soybean germplasm accessions genotyped with
a high-density single-nucleotide polymorphism (SNP) array
(Song et al., 2013, 2020), Zhang et al. (2018) conducted a
GWAS for overall seed composition. In this study, 87 chro-
mosomal regions were identified to be associated with seed
composition, explaining 8%–89% of genetic variances. In
addition, 54 SNPs, as 92 markers, were associated with 18
amino acids; 38 of the 54 SNPs were associated with only
one amino acid, while 11 SNPs were associated with two to 12
amino acids for amino acid concentration in soybean. Hwang
et al. (2014) conducted a GWAS on seed protein and oil con-
tent that identified 40 SNPs in 17 different genomic regions

significantly associated with seed protein. Of these, the five
SNPs with the highest associations and seven adjacent SNPs
were in the 27.6–30.0 Mbp region of Chr. 20 (LG I). Qin et al.
(2019) performed a GWAS of 15 seed amino acid contents
on 249 soybean accessions from China, the United States,
Japan, and South Korea and reported significant genetic
variation.

Yuan et al. (2021) conducted a GWAS for Cys, Met, and
total sulfur-containing amino acids (SAAs) in 165 soybean
materials genotyped with a high-density SNP array and iden-
tified 138 significant SNPs. In this study, a single SNP on
Chr. 7 (LG M) was identified in three environments, and
Glyma.07g175700 and Glyma.07g176000 at the LD of AX-
94036794 were identified as candidate genes. Quantitative
real-time PCR showed that different expression levels of these
genes were observed in high-SAA and low-SAA material,
which suggested that these two genes may be involved in SAA
synthesis. Singer et al. (2022) conducted a GWAS for pro-
teinogenic Met content in soybean seeds and identified a total
of eight significant SNPs associated with higher Met content
(five on Chr. 3 [LG N], two on Chr. 8 [LG A2], and one on
Chr. 16 [LG J]).

Genotype by environment (G × E) interaction affects the
protein quality of soybean, and seed composition even differs
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across geographical regions within the same country due to
environmental variations and genetic factors (Lee et al., 2010;
Medic et al., 2014). In the United States, soybeans cultivated
in southern states have exhibited higher mean protein and oil
concentrations than those in northern states (Breene et al.,
1988; Yaklich et al., 2002). Similar results were concluded in
other studies that showed soybeans cultivated in the northern
and western regions of the Midwest have greater protein loss
for each concentration point gain in oil than southern locations
(Hurburgh et al., 1990; Piper & Boote, 1999). Additionally,
soybean grown in the northwestern states produced soybean
seed with lower protein than the southeastern states in the
United States (Chung et al., 2003). Multiple factors attribute
to regional variation in soybean seed composition, including
temperature (Medic et al., 2014; Piper & Boote, 1999; Pipolo
et al., 2004), water availability (Rotundo & Westgate, 2009,
2010), and soil fertility (Ham et al., 1975; Nakasathien et al.,
2000; Ray et al., 2006).

Interestingly, the effects of temperature on soybean seed
content have been inconsistent (Assefa et al., 2019; Patil et al.,
2017). Kumar et al. (2006) conducted a multilocation field
trials with seven Indian soybean cultivars at four locations,
concluding that temperature was positively correlated with
seed protein content and negatively correlated with oil con-
tent during seed development. In two other studies, warm
temperatures (20–28˚C) during the soybean growing periods
resulted in higher protein content (Sudaric et al., 2006; Voll-
mann et al., 2000). Several other studies have shown that the
increase in temperature resulted in higher oil content while
having no effects on seed protein content (Howell & Cartter,
1958; Mourtzinis et al., 2017; Ren et al., 2009). A quadratic
relationship between oil and protein concentration with tem-
perature has also been reported (Piper & Boote, 1999; Pipolo
et al., 2004).

The composition of soybean seed also differs across global
geographical regions. Studies have indicated that Chinese and
Brazilian soybean cultivars possess higher protein content
than their US counterparts, whereas Argentina exhibits the
lowest protein content among the major soybean-producing
countries (Grieshop & Fahey, 2001; Karr-Lilienthal et al.,
2004; Medic et al., 2014). Ibáñez et al. (2020) conducted
a meta-analytic study on soymeal from 18 published papers
from 2002 to 2018; they concluded that the soymeal in Brazil
exhibited higher levels of crude protein, neutral detergent
fiber, and raffinose but lower levels of sucrose, stachyose,
and potassium (K) than soymeal from the United States or
Argentina. The soymeal from the United States had the most
sucrose and stachyose content and the least raffinose and
crude fiber among the three countries. The amino acid pro-
file of the crude protein also varied across countries. The Lys,
Met, Thr, and Cys concentrations per unit protein were greater
in the United States and Argentina soymeal than in the Brazil
soymeal.

2.3 Genomic studies for protein and amino
acids

Among all identified QTLs, LG I on Chr. 20 is of major
interest due to its close association and large effect with a
high protein allele, and three decades after LG I first report-
ing, Glyma.20G085100 was reported as a candidate gene for
high protein content, contributing to a 2%–3% increase (Fliege
et al., 2022). Glyma.20G085100 has continued to pique inter-
est, and two other groups, Marsh et al. (2022) and Grottel
et al. (2022), also reported the same gene by using pangenome
information and a transgenic approach, respectively. This gene
contains the deletion of 321 bp in the third exon in G. soja,
which is associated with high protein. However, the insertion
of 321 bp in G. max alleles alters its function by diverting
resources in favor of increasing oil and yield, while decreas-
ing protein. Fliege et al. (2022) reported it as a gain of function
allele, while Marsh et al. (2022) and Grottel et al. (2022)
mentioned it as a loss of function allele. Though these stud-
ies have different opinions about the gain or loss of function
allele, it can be argued that the insertion of the 321-bp trans-
posable element disrupts the CCT domain on exon three of
this gene, which then reduces the protein. Therefore, it likely
should be considered as a loss-of-function allele, in agreement
with Marsh et al. (2022) and Grottel et al. (2022). Although
this gene is known, the complete functionality of this gene,
mechanism of action, and biochemical pathway need further
exploration to improve protein content without yield and oil
reduction penalties.

The dominant ‘Danbaekkong’ (Dan) protein allele on Chr.
20 has been linked to higher protein concentration in soybean.
This protein allele provides an alternative source of high pro-
tein in addition to G. soja. Cunicelli et al. (2019) adapted
an SNP protocol for protein concentration developed by War-
rington et al. (2015) to use marker-assisted selection (MAS)
for the Dan allele. They concluded that the lines with the Dan
protein allele contained significantly more protein, less oil,
and lower yield, which supported the results of previous stud-
ies regarding the overall negative correlation between protein
and oil. Another study increased protein by overexpressing
the Arabidopsis QQS (Qua-Quine Starch; At3g30720) orphan
gene in soybean, maize, and rice. According to this study,
QQS is unique to Arabidopsis, which affects nitrogen and
carbon partitioning by interacting with NF-YC transcription
factor (Li et al., 2015).

Lee et al. (2019) conducted a comprehensive GWAS to
identify QTLs for seed content of protein, oil, and several
essential amino acids in soybean. The results indicated that
three and five genomic regions were associated with seed pro-
tein and oil contents, respectively. In terms of amino acid
content, the contents of Cys, Met, Lys, and Thr (g·kg−1

crude protein) were associated with one, three, one, and four
genomic regions, respectively. Interestingly, a QTL on Chr. 5
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(LG A1) was reported to increase oil while having no effects
on protein content. On the contrary, a QTL on Chr. 10 (LG O)
was reported to increase protein content with little effect on
oil content, and this QTL co-localized with the maturity gene
E2/GmGIa. The results from this study demonstrated the fea-
sibility of reducing the negative correlation between protein
and oil by utilizing trait-specific QTLs.

Malle, Eskandari, et al. (2020) reported QTLs associ-
ated with Cys and Met content in a core set of 137
Canadian soybean lines from maturity group (MG) 000–
II. Using both a mixed linear model and six multilocus
methods with a catalog of 2.18 M SNPs, a total of
nine QTLs and 17 quantitative trait nucleotides (QTNs)
were identified, of which seven comprise promising can-
didate genes. Five other candidate genes were identified
within four haplotype blocks through multilocus methods.
Among these, Glyma.13g108800, Glyma.14g003200, and
Glyma.14g003400 were annotated to be involved in Cys
biosynthesis. Two other candidate genes, Glyma.04g237300
and Glyma.16g032200, had an annotation indirectly associ-
ated with Met biosynthesis.

Zhang et al. (2020) mapped a highly effective protein
and oil QTLs to a sugar transporter (GmSWEET39) gene
by a combination of biparental linkage mapping and asso-
ciation analysis using 631 whole-genome sequencing data.
GmSWEET39 was found to have pleiotropic associations
with both seed protein and oil, and a small deletion in
GmSWEET39 has been extensively selected and used world-
wide for its association with higher seed oil and lower seed
protein. Intensive use of this GmSWEET39 deletion in breed-
ing programs may have resulted in low protein across current
soybean cultivars.

2.4 Breeding efforts and future directions
for protein and amino acids

The US soybean seed yield has increased drastically over the
past decades due to genetic gains from breeding efforts. How-
ever, the strong negative correlation between seed yield and
seed protein, and between oil and protein content, has hin-
dered the development of high-yielding cultivars with high
protein content (Lee et al., 2010; Patil et al., 2017; Rincker
et al., 2014). Rincker et al. (2014) conducted a study to esti-
mate the genetic change in yield and other agronomic traits
of northern soybean cultivars MG II–IV in North Amer-
ica over the past 80 years. The study estimated that there
was a 23-kg·ha−1

·year−1 increase in yield, 0.14-g·kg−1
·year−1

increase in oil concentration, and 0.22-g·kg−1
·year−1 decrease

in seed protein concentration in the MG II cultivars; a 23-
kg·ha−1

·year−1 increase in yield, 0.10-g·kg−1
·year−1 increase

in oil concentration, and 0.22-g·kg−1
·year−1 decrease in

protein concentration in the MG III cultivars; and a 20-

kg·ha−1
·year−1 increase in yield, 0.05-g·kg−1

·year−1 increase
in oil concentration, and 0.16-g·kg−1

·year−1 decrease in seed
protein concentration in the MG IV cultivars. The estimate of
annual genetic yield gain was similar to Specht and William
(1984), and the estimate of oil and seed protein concentra-
tion was similar to Wilcox et al. (1979) and Voldeng et al.
(1997). In another study, Rogers et al. (2015) analyzed the
genetic change in yield and other agronomic traits of south-
ern soybean cultivars (MG IV–VI) in North America over the
past 80 years. The study estimated that the average annual
yield increased by 16.8 kg·ha−1

·year−1, the oil concentration
increased by 0.16 g·kg−1

·year−1, and the protein concentra-
tion decreased by 0.17 g·kg−1

·year−1 for the southern soybean
cultivars.

While there have been successful attempts at increasing
protein concentration in soybean cultivars for decades (Burton
et al., 1999; Weber & Fehr, 1970), selection for this trait is hin-
dered by differences in environment (Warrington et al., 2014).
Additionally, protein is affected more by genotypic variation
than by the environment (Lee et al., 2010; Shorter et al., 1977).
In recent years, efforts have been made to increase the com-
petitiveness of US soybean in the global feed market. This
led to the development and release of high-protein soybean
cultivars and germplasms with high yield potential by public
soybean breeding programs in the United States (Bagherzadi
et al., 2022; Bhusal et al., 2022; Chen et al., 2022; Fallen et al.,
2022; Pantalone & Smallwood, 2018; Pantalone et al., 2017).

Since seed composition traits are controlled by many QTLs,
the MAS using only a few major QTLs may not be effective
to achieve the ultimate goal of desirable seed compositions
. After Meuwissen et al. (2001) proposed the concept of
genomic prediction for genomic selection, it was success-
fully implemented in an animal breeding program for complex
quantitative traits (Schaeffer et al., 2006) and subsequently
utilized in a plant breeding program (Massman et al., 2013).
To date, genomic selection has been successfully applied in
soybean breeding programs for key traits, including seed oil
and protein (Hemingway et al., 2021; Jarquin et al., 2016;
Stewart-Brown et al., 2019), grain yield (Bhat et al., 2022;
Ravelombola et al., 2021; Stewart-Brown et al., 2019), agro-
nomic traits (Ma et al., 2016; Zhang et al., 2016), and disease
resistance (Bao et al., 2014; de Azevedo Peixoto et al., 2017;
Shi et al., 2022). Further nutritional component applications
of genomic prediction in soybean will be discussed in later
sections.

2.5 Food grade considerations for protein
and amino acids

Soybean breeders are interested in the seed storage proteins
glycinin (11S) and β-conglycinin (7S), which account for
more than 70% of the total soybean protein content and have
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7 of 31 SINGER ET AL.The Plant Genome

been reported to affect the firmness and smoothness of tofu
(Guo & Yang, 2015; Meng et al., 2016; Saio & Watanabe,
1978; Zheng et al., 2020). The effects of 11S, 7S, and the
11S/7S protein ratio on tofu texture have been controversial
(Cai & Chang, 1999; Meng et al., 2016). Some studies have
indicated that 11S and 11S/7S ratio were positively correlated
with tofu gel hardness (Cai & Chang, 1999; Chang, 2015;
Kang et al., 1991; Kim & Wicker, 2005; Saio, 1979; Saio et al.,
1969). Contrarily, some studies have shown that 7S protein
resulted in harder gels than the 11S protein and that 11S/7S
protein ratio had a negative relationship with tofu hardness
(Cai & Chang, 1999; Murphy et al., 1997; Utsumi & Kinsella,
1985). The absence of the 11S globulin polypeptide, 11S A4,
was reported to be positively correlated with seed size, tofu
hardness, and water holding capacity (James & Yang, 2016;
Yang & James, 2014).

The 11S protein is a hexamer of 360 kDa. The six sub-
units are composed of acidic (A1a, A1b, A2, A3, A4, and
A5) and basic (B1a, B1b, B2, B3, and B4) polypeptides linked
by disulfide bonds (Bradley et al., 1975; Li & Zhang, 2011;
Ma et al., 2010, 2016; Zhang et al., 2021). Multiple genes
have been reported to encode for the 11S subunits, and these
genes have been designated as Group 1: Gy1 (A1aB2), Gy2
(A2B1a), and Gy3 (A1bB1b); Group 2: Gy4 (A5A4B3) and
Gy5 (A3B4); Group 3: two pseudogenes (gy6 and gy8); and
Gy7 (polypeptide groups not assigned) (Beilinson et al., 2002;
Boehm et al., 2018; Fischer & Goldberg, 1982; Li & Zhang,
2011; Nielsen et al., 1989; Scallon et al., 1985). The 7S is a
trimer of α, αʹ, and β subunits that is approximately 180 kDa
(Ma et al., 2016; Thanh & Shibasaki, 1978; Zhang, Du et al.,
2021). A total of 15 genes (CG1–CG15) have been reported
to encode the 7S subunits (Harada et al., 1989; Singh et al.,
2015; Yoshino et al., 2002; Zhang et al., 2021).

The 11S globulin was reported to contain three to four times
more Met and Cys than 7S, suggesting that 7S ß-subunits
are poor in nutritional value Therefore, the nutritional qual-
ity of soybean can be increased by the accumulation of 11S
globulin while inhibiting the accumulation of 7S globulin in
soybean seeds (Ma et al., 2016). To date, more than 100 QTLs
associated with soybean seed storage protein have been iden-
tified (Grant et al., 2010). Efforts have been made on mapping
QTLs that are associated with 7S subunits, and notably, a sin-
gle dominant gene, Scg-1, was mapped on Chr. 20 (LG I).
The gene was reported to suppress the transcription of all
7S subunits without affecting the rest of the plant (Teraishi
et al., 2001). In addition, J. Wang et al. (2014) identified a
single dominant locus qBSC-1 that controlled the ß-subunits
on Chr. 20 (LG I). Regarding the 11S subunit gene family,
Beilinson et al. (2002) mapped the Group I Gy1 and Gy3 on
Chr. 19 (LG L) and Gy2 on Chr. 3 (LG N). However, the
results in Beilinson et al. (2002) were inconsistent with the
previous studies where Group I glycinin genes occupied two
chromosomal domains (Nielson et al., 1989). Other studies

have confirmed that Gy1 and Gy2 are tandemly linked on Chr.
3 (LG N), and Gy3 and Gy7 were mapped on Chr. 19 (LG L)
(Cho et al., 1989; Li & Zhang, 2011). In addition, Gy4 was
mapped on Chr. 10 (LG O), and Gy5 was mapped on Chr. 13
(LG F) (Chen & Shoemaker, 1998; Diers et al., 1994).

3 OIL AND FATTY ACIDS

3.1 Introduction to oil and fatty acids

Soybean plays a multifaceted role in global food security, agri-
cultural production, and the overall economy (Liu et al., 2020;
Vieira & Chen, 2021). As the public awareness of eco-friendly
and healthy traits in vegetable oils has increased, soybean
oil has continuously been highlighted in the biofuel indus-
try and food applications, resulting in a significant increase in
global soybean oil production by approximately 44% (42.8–
61.6 million Mt) over the past decade (USDA, 2013, 2023).
Therefore, soybean breeding programs have devoted tremen-
dous efforts to developing new soybean cultivars producing
higher seed oil content (Clemente & Cahoon, 2009; Hart-
man et al., 2011). Increasing oil content is challenging due
to factors such as pleiotropic effects or linkage, leading to
a negative correlation with seed protein content (Brummer
et al., 1997; Chung et al., 2003; Clemente & Cahoon, 2009;
Cober & Voldeng, 2000). In addition, the functionality and
quality of soybean oil for food and industrial applications
are predominantly determined by its fatty acid profile (Bilyeu
et al., 2018; Clemente & Cahoon, 2009). Soybean oil con-
sists of five major fatty acids: palmitic (16:0, ∼13%), stearic
(18:0, ∼4%), oleic (18:1, ∼20%), linoleic (18:2, ∼55%), and
linolenic acids (18:3, ∼8%) (Bilyeu et al., 2018; Fehr, 2007;
Pham et al., 2010). For instance, the oxidative stability and
shelf life of soybean oil are substantially reduced by higher
seed concentrations of polyunsaturated fatty acids (PUFAs)
such as linoleic and linolenic acid (Clemente & Cahoon, 2009;
Fehr, 2007). Partial hydrogenation has been widely used to
reduce high PUFA concentrations in soybean (Clemente &
Cahoon, 2009). However, this process generates trans-fatty
acids whose consumption has been associated with nega-
tive health consequences, including cardiovascular disease
(Clemente & Cahoon, 2009; Danaei et al., 2009; de Souza
et al., 2015). It also reduces the lubricity and increases the
viscosity of soybean oil, compromising its use in the biodiesel
industry (Clemente & Cahoon, 2009; Moser et al., 2007). Soy-
bean oil with high oleic acid (>70%) is also associated with
enhanced oxidative stability and nutritional value without the
health-threatening trans-fatty acids generated through partial
hydrogenation (Bilyeu et al., 2018; Combs & Bilyeu, 2019;
Fehr, 2007). Stearic acid content is important not only for
oxidative stability but also for the bakery industry because
it increases the melting point of fat preventing melting at
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room temperature (Jeong et al., 2018). Therefore, genetic
approaches have proved to be an efficient tool for reducing
PUFAs and improving the functionality of soybean oil with-
out negative properties (Clemente & Cahoon, 2009). In this
section, the major genetic and genomics advances made in the
modification of seed oil content as well as stearic, oleic, and
linolenic acid seed contents are reported.

3.2 Genetic studies for oil and fatty acids

Since the first study reporting QTLs associated with seed oil
content (Diers et al., 1992), more than 320 QTLs have been
reported across the 20 LGs (Soybase.org, 2022). However,
only a few have been detected in multiple genetic backgrounds
or environments, and their application in soybean breeding
programs through MAS has been limited given the quantita-
tive nature of the trait (Qi et al., 2011). Therefore, only QTLs
that have been confirmed by multiple studies are reported in
Table S2. Using 60 F2:3 lines derived from a cross between
the high oil experimental line (A81-356022) and the G. soja
PI 468916, Diers et al. (1992) identified nine RFLP markers
associated with seed oil content across Chrs. 14 (LG B2), 15
(LG E), 19 (LG L), and 20 (LG I). Brummer et al. (1997) were
the first to study the stability of oil-related QTLs in soybean.
Using over 670 soybean lines derived from eight different
populations developed in Minnesota, Indiana, and Nebraska,
the study identified 11 RFLP markers distributed in seven
chromosomes that were stable across the testing environ-
ments (Brummer et al., 1997). Orf et al. (1999) applied simple
sequence repeat (SSR) markers in mapping studies related to
seed oil content in soybean. By using three biparental pop-
ulations and over 400 molecular markers, including RFLP
and SSR, the study reported two SSR markers (Satt174 and
Satt432) associated with seed oil content in Chrs. 5 (LG A1)
and 6 (LG C2), respectively (Orf et al., 1999). Many map-
ping studies based on biparental populations later confirmed
similar QTLs using higher density molecular markers and
different parental lines (Table S2).

Mutations and targeted downregulation of Δ9 Stearoyl-
ACP desaturase (SACPD) have been shown to significantly
affect the stearic acid content. Multiple studies have reported
the inheritance of the stearic acid trait (Bubeck et al., 1989;
Graef et al., 1985, 1988; Pantalone et al., 2002) as well as
mapped large genomic regions associated with the regula-
tion of seed stearic acid content (Diers & Shoemaker, 1992;
Hyten, Pantalone, Saxton, et al., 2004; Panthee et al., 2006;
Reinprecht et al., 2006). Byfield et al. (2006) confirmed the
existence of two SACPD genes (SACPD-A and SACPD-B) on
Chrs. 7 (LG M) and 2 (LG D1b), respectively (Table S3).
P. Zhang et al. (2008) later identified and confirmed a third
SACPD gene (SACPD-C) on Chr. 14 (LG B2) that encodes
a unique isoform of SACPD desaturase responsible for con-

verting stearic acid to oleic acid (Table S3). Recently, other
genes of SACPD-D and SACPD-E were identified on Chr. 13
(LG F), but only SACPD-D was reported as a potential new
genetic source of high stearic acid using Targeting Induced
Local Lesions IN Genomes (TILLING)-by-sequencing tech-
nology (Hudson & Hudson, 2021; Lakhssassi et al., 2020)
(Table S3). To date, several mutageneses using sodium azide,
gamma-ray, and fast neutron in SACPDs have achieved stearic
acid content ranging from 7% to 28% (Table S4).

The fatty acid desaturase-2 enzyme (FAD2) is responsible
for the conversion of oleic acid to linoleic acid in develop-
ing soybean seeds (Pham et al., 2010; Schlueter et al., 2007).
The soybean FAD2-2 genes consisting of FAD2-2A (Schlueter
et al., 2007), FAD2-2B (Schlueter et al., 2007), and FAD2-2C
(Bachlava et al., 2009) were found to be widely expressed in
the vegetative tissues of the soybean plant (Schlueter et al.,
2007), while FAD2-1A (Schlueter et al., 2007) is expressed
primarily in developing seeds (Tang et al., 2005). Pham et al.
(2010) created the high oleic (HO) acid trait in soybean by
identifying and combining mutations in FAD2-1A and FAD2-
1B. The study identified three polymorphisms in the FAD2-1B
alleles of two soybean lines resulting in missense mutation, of
which the HO phenotype was observed when combined with
existing FAD2-1A mutations (Pham et al., 2010). Mutations
in the FAD3-A (Rennie et al., 1988) gene resulted in a lower
linolenic acid (LL) content of approximately 4% (Chappell &
Bilyeu, 2007). Combinations of mutations in FAD3-A with
either FAD3-B (Bilyeu et al., 2003) or FAD3-C (Bilyeu et al.,
2003) lowered linolenic acid to approximately 3%, while com-
bined mutations in FAD3-A, FAD3-B, and FAD3-C resulted
in 1% linolenic acid (Bilyeu et al., 2005, 2006, 2011). Later,
Pham et al. (2012) combined the FAD2-1A and FAD2-B muta-
tions with FAD3 genes resulting in nontransgenic high oleic,
low linolenic (HOLL) soybean.

3.3 Genomic studies for oil and fatty acids

With the availability of high-density SNP markers and
advanced statistical methodologies, multiple GWASs iden-
tified additional genomic regions associated with seed oil
as well as confirmed the previously reported regions from
biparental population studies (Bandillo et al., 2015; Cao et al.,
2017; Hwang et al., 2014; Lee et al., 2019; Sonah et al.,
2015). Hwang et al. (2014) were the first to conduct a GWAS
to identify marker–trait associations for seed oil content.
The accession panel used in this study included 298 soy-
bean germplasms exhibiting a wide range of seed protein and
oil content that were genotyped using 55,159 SNPs (Hwang
et al., 2014). The study identified novel genomic regions on
Chr. 8 (LG A2) and confirmed previously reported associ-
ations on Chr. 20 (LG I) (Chung et al., 2003; Diers et al.,
1992). Using a genotyping-by-sequencing (GBS) approach
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in 304 short-season soybean lines, Sonah et al. (2015) iden-
tified eight marker–trait associations that were previously
reported across Chrs. 5 (LG A1) (Brummer et al., 1997),
8 (LG A2) (Brummer et al., 1997), 10 (LG O) (Panthee
et al., 2005), 14 (LG B2) (Diers et al., 1992), 16 (LG J) (Lee
et al., 1996), 19 (LG L) (Diers et al., 1992; Hyten, Pantalone,
Sams, et al., 2004; Lee et al., 1996), and 20 (LG I) (Chung
et al., 2003; Diers et al., 1992; Hwang et al., 2014). Bandillo
et al. (2015) conducted a large GWAS using 12,000 geneti-
cally diverse soybean accessions genotyped with the Illumina
Infinium SoySNP50K BeadChip. The study narrowed down
the previously reported genomic regions on Chrs. 5 (LG A1)
(Brummer et al., 1997; Sonah et al., 2015), 15 (LG E) (Diers
et al., 1992; Lee et al., 1996), and 20 (LG I) (Chung et al.,
2003; Diers et al., 1992; Hwang et al., 2014).

To date, numerous QTLs associated with the five soybean
fatty acids have been reported using biparental populations
and different accession panels (Table S5). A total of 45 QTLs
associated with palmitic acid content were identified across 17
chromosomes. Of those QTLs, seven were identified on Chr.
18 (LG G), and five were identified on Chrs. 5 (LG A1) and 9
(LG K). For stearic acid, 36 QTLs were identified across 17
chromosomes, of which four QTLs were identified on Chrs.
6 (LG C2) and 13 (LG F), and three QTLs were identified on
Chrs. 7 (LG M), 14 (LG B2), 16 (LG J), and 18 (LG G). A
total of 45 QTLs associated with oleic acid in soybean were
reported across 18 chromosomes, of which five QTLs were
found on Chr. 18 (LG G) and four QTLs were found on Chr.
5 (LG A1), 13 (LG F), 15 (LG E), and 16 (LG J). Of the
44 linoleic acid-related QTLs across 17 chromosomes, four
QTLs were identified on Chr. 3 (LG N), 5 (LG A1), 16 (LG J),
and 18 (LG G), and three QTLs each were identified on Chr.
10 (LG O), 13 (LG F), 14 (LG B2), 15 (LG E), and 19 (LG
L). A total of 68 linolenic acid-related QTLs have been iden-
tified across 18 chromosomes. Of those QTLs, 12 QTLs were
identified on Chr. 14 (LG B2), and 11 QTLs were identified
on Chr. 15 (LG E).

3.4 Breeding efforts and future directions
for oil and fatty acids

The soybean breeding community has made remarkable
progress in developing and releasing cultivars and germplasm
with enhanced seed composition, including higher seed oil
content and modified fatty acid profiles (Burton et al., 2012;
P. Chen et al., 2020, 2021, 2022, 2023; Shannon et al., 2007).
Numerous breeding lines originated from first- and second-
generation HOLL backcrossing conversions have been used in
forward-crossing breeding schemes aiming to develop higher
yielding populations with fixed alleles conferring the HOLL
phenotype. The strong negative correlation between stearic
acid seed content and agronomic traits, such as germination

rate and yield performance, remains a bottleneck in breed-
ing for higher stearic acid content. Further research to identify
precise and smaller deletions resulting in high stearic content
may resolve the negative agronomic traits and facilitate the
development of high stearic germplasm and cultivars.

Genome-wide prediction applications were reported to be
successful for seed oil content with accuracies ranging from
0.71 (Stewart-Brown et al., 2019) to 0.92 (Jarquin et al.,
2016). Although promising, the applicability of genomic
prediction for seed oil content is still negligible for many
soybean breeding programs given the relatively low cost
and high-throughput assessment of seed composition through
near-infrared reflectance spectroscopy (NIRS) compared to
genotyping costs. Nevertheless, multivariate genomic pre-
diction models leveraging the genetic correlations among
traits of interest (Xavier & Habier, 2022) can be explored
to improve the identification and selection of genotypes with
desirable oil content and/or fatty acid profile and grain yield
simultaneously.

3.5 Food grade considerations for oil and
fatty acids

The raw, beany flavor of soybean has been recognized as
a major flavor defect when used for human consumption
(Mattick & Hand, 1969; Yang et al., 2016). The beany flavor
in soybean results from the degradation of PUFAs by lipoxy-
genase (LOX) into hydroperoxyl derivatives, which further
break down into different volatile compounds, resulting in
the beany flavor (Wang et al., 2021). Mature soybean seeds
contain three LOX isozymes (LOX1, LOX2, and LOX3)
encoded by Glyma.13g347600 (GmLox1), Glyma.13g347500
(GmLox2), and Glyma.15g026300 (GmLox3), which are
responsible for the formation of the beany flavor. Natural
mutants for single, double, and triple lipoxygenase isozymes
and the mutated gene fragments have been identified (Kita-
mura, 1984; Lee et al., 2014; J. Wang et al., 2020). A series
of soybean varieties lacking lipoxygenase have been devel-
oped using these mutant lines (Chung, 2009; Han et al., 2002).
Lenis et al. (2010) reported molecular marker assays designed
to distinguish mutant from wild-type alleles for Lox1, Lox2,
and Lox3. Wang et al. (2020) adopted a CRISPR/Cas9 strat-
egy targeting the three GmLox genes and developed transgenic
lipoxygenase-free mutants, which could be used for beany
flavor reduction without the use of transgenic techniques.

Besides beany flavor, other off-odors from the oxidation
of unsaturated fatty acids during soymilk processing nega-
tively affect consumption. In a GWAS analyzing a natural
population of 110 soybean germplasm accessions, nine can-
didate genes (e.g., Glyma.06G070100, Glyma.07G085200,
and Glyma.18G017600) associated with 2-heptenal content
in soybean seed (a known cause of soymilk off-odors) were
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detected on Chrs. 6 (LG C2), 7 (LG M), 10 (LG O), 13 (LG
F), 18 (LG G), and 19 (LG L) (Z. Wang et al., 2020). Another
GWAS using a natural population of 90 Chinese soybean
accessions identified 21 novel QTNs associated with 1-octen-
3-ol content in soybean seed, which can cause off-flavors such
as mushrooms, lavender, rose, and hay (Xia et al., 2019).
These provide important information for selecting soybean
cultivars with reduced off-flavor for soymilk.

4 CARBOHYDRATES

4.1 Introduction to carbohydrates

Carbohydrates are an important group of storage compounds
in soybean seeds. Carbohydrates are found in two forms,
soluble and insoluble, of which soluble carbohydrates have
garnered more attention than insoluble carbohydrates due to
their value in food and feed applications. Typical soybean
seeds contain around 15% of soluble carbohydrates, which
are divided into three main components: sucrose (∼5%), raffi-
nose (∼1.5%), and stachyose (∼5%) (Hsu et al., 1973; Y. Wang
et al., 2014; Wilson, 2004).

Of these three main soluble carbohydrates, sucrose is eas-
ily digestible and serves as the main source of metabolizable
energy (ME) for animal feeds. Because the ME of sucrose
(3900 kcal·kg−1) is significantly greater than that of starch
(2918–3396 kcal·kg−1), animal producers are interested in
feed formulation with higher sucrose concentration (John,
2008; Ostezan et al., 2023). Additionally, higher sucrose
concentration is positively correlated with the sweetness of
soy-based products, including natto, tofu, edamame, and
soymilk (Rosset et al., 2012; Sui et al., 2020; Wang et al.,
2023). Thus, improving sucrose content has become more
common in soybean breeding programs due to its higher
ME efficiency for animal feed and the natural sweetness in
soymeal for human consumption (Ficht et al., 2022; Sui et al.,
2020).

On the other hand, the other two soluble carbohydrates,
raffinose and stachyose, are considered antinutritional factors
(ANFs) known as raffinose family oligosaccharides (RFOs).
Raffinose is a trisaccharide composed of a sucrose (disac-
charide) and a galactose (monosaccharide), while stachyose
is a tetra-saccharide composed of a sucrose and two galac-
toses (Figure 3). In raffinose synthesis, raffinose synthase
(RS) initiates chain elongation by adding galactose to sucrose
to produce raffinose (Peterbauer & Richter, 2001). Subse-
quently, stachyose synthase (SS) executes the second chain
elongation by adding another galactose to raffinose to pro-
duce stachyose (Peterbauer & Richter, 2001). RFOs are
indigestible in monogastric animals due to the lack of α-
galactosidase enzyme activity breaking down the glycosidic
linkage between the elongated chains (Chaudhary et al.,

2015). Undigested raffinose and stachyose pass to the lower
gut as a substrate for microbial fermentation to liberate car-
bon dioxide, methane, and hydrogen sulfide, which can cause
diarrhea and discomfort and eventually reduce feed energy
efficiency (Chaudhary et al., 2015; Jo et al., 2018; Kumar
et al., 2010). Therefore, removing these ANFs along with
improving sucrose in soybean seed is critical to improve ME
efficiency for animal feeds as well as for market preference
(Coon et al., 1990; Parsons et al., 2000).

4.2 Genetic studies for carbohydrates

Relative to oil and protein content, a smaller number of QTLs
related to soluble carbohydrates (37 QTLs for sucrose and
15 QTLs for oligosaccharides) have been identified through
a biparental mapping strategy (Table S6). One of the initial
studies to identify QTLs for sucrose content in soybean was
reported by Maughan et al. (2000). This study identified 17
QTLs across seven LGs using 149 F2:4 individuals from an
interspecific cross between a large-seeded breeding line (V71-
370) and a G. soja line (PI 407162). Kim et al. (2005) reported
sucrose- and RFOs-related QTLs on Chrs. 2 (LG D1b), 11
(LG B1), and 19 (LG L), of which two common QTLs on
Chrs. 2 (LG D1b) and 19 (LG L) were identified. Later, H. K.
Kim et al. (2006) identified QTLs on Chrs. 2 (LG D1b), 6 (LG
C2), 12 (LG H), 14 (LG B2), 15 (LG E), 16 (LG J), and 19
(LG L) using the same donor parent (‘Keunolkong’), of which
five common QTLs for sucrose and RFOs on Chrs. 12 (LG H),
14 (LG B2), 15 (LG E), and 16 (LG J) were identified. Two
F2:3 populations were used to identify QTLs associated with
reduced stachyose content, where PI 200508 was used as a
reduced stachyose donor parent (Skoneczka et al., 2009). This
study identified a major QTL on Chr. 6 (LG C2) for sucrose
and stachyose content. Another major QTL associated with
elevated sucrose and reduced RFOs content was identified
on Chr. 11 using a large-seeded breeding line (V71-370) as
a donor parent and G. max line (PI 87013) (Saghai Maroof
& Buss, 2008). Wang et al. (2014) reported three sucrose-
related and four RFOs-related QTLs across Chrs. 7 (LG M),
11 (LG B1), 12 (LG H), and 20 (LG I), and a common QTL for
sucrose and RFOs content on Chr. 11 (LG B1) was confirmed
to be on the same genomic region as identified by Saghai
Maroof and Buss (2008). Zeng et al. (2014) identified three
QTLs for sucrose content on Chrs. 5 (LG A1), 9 (LG K), and
16 (LG J), accounting for 46%, 10%, and 8%, respectively,
of the phenotypic variation. Later, many biparental mapping
studies using different donor parental lines and larger marker
sets were conducted to locate significant QTLs associated
with soluble carbohydrates (Table S6). Recently, researchers
have also made tremendous efforts to identify significant
SNPs and potential candidate genes for soluble carbohydrates
via GWASs using diverse germplasm accessions (Table S7).
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F I G U R E 3 The biosynthesis pathways of carbohydrates in soybean (created with BioRender.com).

Environmental effects cannot be ignored despite the signif-
icant genetic effects in soybean carbohydrate accumulation.
Seed sucrose accumulation is terminated after the maximum
seed dry weight, while 70% of RFOs accumulation begins
with the onset of seed desiccation and the cease of sucrose
accumulation during the pod-filling stages (Fehr et al., 1971;
Obendorf, 1997; Obendorf et al., 2009). Due to photope-
riod sensitivity, the days of vegetative and reproductive stages
in soybean are predominantly determined by day length in
the growing area. Therefore, pod-filling stages are closely
associated with the designated MG in soybean. Several stud-
ies reported a significant correlation between carbohydrate
accumulation and soybean growing areas where 11 distinct
maturity categories are fitted from north (MG 000) to south
(MG VIII) in North America (Scott & Aldrich, 1970; Zhang
et al., 2007). Bilyeu and Wiebold (2016) reported that cooler
temperature during soybean pod-filling stages had a positive
correlation with sucrose accumulation but a negative effect
on stachyose content. Furthermore, other studies supported
that soybean carbohydrates responded to different growing
areas from the northern United States (cooler temperature,
early MG) to the southern United States (warmer tempera-
ture, late MG) (Bellaloui et al., 2010; Jo et al., 2019; Kumar
et al., 2010; Ren et al., 2009). Thus, it is important in soybean
carbohydrate research to investigate whether genomic regions
discovered by GWAS or QTL mapping overlap soybean
maturity genes (Jo et al., 2019).

4.3 Genomic studies for carbohydrates

As a precursor to many improved carbohydrate contents
in soybean, a desirable carbohydrate profile (elevated
sucrose and reduced RFOs) was found in PI 200508 in the

USDA Soybean Germplasm Collection (Kerr & Sebas-
tian, 2000). Later, a 3-bp deletion within the RS2 coding
region (Glyma.06g179200, Wm82.a2.v1) in PI 200508 was
characterized and caused one amino acid deletion (Trp) at
a highly conserved position 331 (rs2W331-) (Dierking &
Bilyeu, 2008; Kerr & Sebastian, 2000; Skoneczka et al.,
2009). Dierking and Bilyeu (2009) found another significant
mutation in the RS2 coding sequence in an ethyl methane-
sulfonate (EMS)-mutagenized soybean line using TILLING.
This mutation led to one amino acid substitution from
Thr to Ile at position 107 (rs2T107I) (Dierking & Bilyeu,
2009). Hagely et al. (2013) identified that synonymous RS3
SNPs (Glyma05g003900, Wm82.a2.v1; rs3snp5/rs3snp6)
played a key role in achieving extremely reduced RFOs
in soybean with the presence of RS2 alleles. Sebastian
et al. (2000) developed a soybean mutant line LR33 using
chemical mutagenesis, which contained a single base pair
polymorphism in a conserved region of D-myo-inositol-
3-phosphate synthase 1 (MIPS1) gene (Glyma11g238800,
Wm82.a2.v1). This mutation significantly reduced phytic
acid, raffinose, and stachyose and increased sucrose
content. Later, Saghai Maroof and Buss (2008) iden-
tified a natural mutation in the MIPS1 coding region,
which conferred desirable carbohydrate profiles. To date,
three genes, Glyma05g003900 (RS3), Glyma.06g179200
(RS2), and Glyma11g238800 (MIPS1), have been
widely used in MAS breeding for desirable carbohydrate
profiles.

Valentine et al. (2017) used RNAi silencing to down-
regulate the RS2 gene, which improved the total ME from
2411 to 2703 kcal·kg−1. Cao et al. (2022) used a multiplex
CRISPR/Cas9 approach for targeting RS2 and RS3 genes.
This study generated multiple mutants (double mutant RS2
+ RS3 and single mutants for RS2) and showed significantly

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20415 by Fort H

ays State U
niversity, W

iley O
nline L

ibrary on [01/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SINGER ET AL. 12 of 31The Plant Genome

reduced raffinose and stachyose content without penalty for
plant growth and metabolism. Besides RS, galactinol also
plays an important role in the biosynthesis of RFOs (Figure 3).
A study induced knockouts in two galactinol synthase (GS)
genes using gRNAs CRISPR/Cas9, of which the total RFOs
content was significantly reduced from 64.7 to 42.0 mg·g−1

on a dry weight basis (Le et al., 2020). Recently, another
study almost eliminated RFOs content in soybean seed via a
multiplex genome editing system using three RS genes and
one SS gene simultaneously (Lin et al., 2023). These studies
proved the biological functions of RS, SS, and GS genes in the
metabolism of RFOs, which are significantly responsible for
ME efficiency. However, the bottleneck persists in employing
these lines in breeding programs and MAS.

4.4 Breeding efforts and future directions
for carbohydrates

As almost 80% of global soybean production is mainly
used for animal feeds, developing new soybean cultivars and
germplasms with desirable carbohydrate profiles has been
targeted in public and private soybean breeding programs
(Hannah & Max, 2021). These efforts have been facilitated
to identify promising soybean accessions from the natural
germplasm collections (Hou et al., 2009; Kerr & Sebastian,
2000; Kim et al., 2005) or chemically mutated soybean lines
(Dierking & Bilyeu, 2009; Hitz et al., 2002). These acces-
sions have been used to identify QTLs associated with the
desirable carbohydrate profiles via the QTL mapping strat-
egy. Although many efforts have been made to identify major
QTLs and develop molecular markers, only a few cultivars
and germplasms have been released (Hagely et al., 2020; Jo
et al., 2019; Maughan et al., 2000; Sebastian et al., 2000).
The breeding target of new soybean cultivars for the ani-
mal feed industry is a sucrose content of over 7% and RFOs
content of less than 1%–2% (Pereira, 2020). However, signifi-
cant environmental effects on carbohydrate profiles have been
addressed as a major pitfall in developing new cultivars with
stable carbohydrate profiles (Jo et al., 2018, 2019).

Further investigation to identify environmentally stable
QTLs will improve breeding efficiency for new soybean cul-
tivars and germplasms with high sucrose and low RFOs
content. A negative correlation between protein and sucrose
content is another bottleneck in soybean seed (Patil et al.,
2017). As high protein content is the most highlighted fea-
ture in soybean seed, further investigation is needed to dissect
the genetic architecture underlying the negative correlation to
maximize animal feed quality.

To the best of our knowledge, there has been only one
genomic prediction study for soluble carbohydrate content in
soybean, which was conducted by Riaz et al. (2023). With the
advent of high-throughput genotyping, genomic prediction

would be one of the promising future directions to enhance
breeding efficiency in selecting potential new cultivars with
desirable soluble carbohydrate profiles.

4.5 Food grade considerations for
carbohydrates

The sweetness flavor of edamame beans is a crucial fac-
tor for consumer acceptance, and it is influenced by the
content of sucrose and alanine (Ala). Wang et al. (2023)
conducted a GWAS of fresh edamame beans of 189 acces-
sions and identified 43 and 25 genetic markers associated
with sucrose and Ala content, respectively. Four genes that
affect sucrose biosynthesis and 37 novel genes related to
sucrose content were identified, along with three genes with
likely relevant effects on Ala content and 22 novel Ala-related
genes. Moreover, a GWAS of 249 soybean accessions from
China, the United States, Japan, and South Korea has found
11 SNP markers related to Ala content in soybean seeds, such
as Gm07_39077446, Gm09_43473530, and Gm10_12029489
(Qin et al., 2019).

5 OTHER FUNCTIONAL
COMPONENTS

5.1 Introduction to other functional
components

Soybean has many other nutritional components that should
be considered during breeding alongside the previously dis-
cussed components. This includes ANFs that have a negative
effect on humans and animals when consumed and must be
removed or inactivated before consumption, such as trypsin
inhibitors (TIs), phytate, and allergens. Besides ANFs, soy-
bean also has other beneficial nutritional components that
make up a smaller percentage of the nutrient profile, which
include isoflavones vitamins, and some minerals (Messina,
1999).

TIs are the most impactful ANFs found in soybean and
have two main families, the Kunitz trypsin inhibitor (KTI) and
the Bowman–Birk trypsin inhibitor (BBTI) (van den Heuvel,
2021). Both proteins can bind to and inhibit the function of
proteases found in the guts of most animals, including fish,
cattle, poultry, humans, insects, and others (Liener, 1994).
These proteins will inhibit proteases such as trypsin, chy-
motrypsin, and elastin (Liener, 1994). By inhibiting these
enzymes, TIs interfere with protein digestion and prevent ani-
mals from obtaining nutrients, specifically proteins, nitrogen,
and sulfur, from soymeal. This can cause a wide range of
effects, some of which are common across species, while
others depend on the species that consumed the soymeal.
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Decreased growth is a common effect across species (Flavin,
1982). In certain animals, such as rats, chickens, and mice,
TIs can result in pancreatic hypertrophy and reduced feather
and fur growth (Hill, 2003). It is worth noting that soybean
TIs do not affect humans significantly, especially compared
to how they affect other species (Flavin, 1982). This is mainly
due to the consumption of cooked soyfood. TIs are inac-
tivated in soymeal by roasting for 30 min at 100˚C or for
22 min at 110˚C, though it is possible to use ultrahigh tem-
peratures, such as 160˚C, to inactivate TIs in a single minute
(Avilés-Gaxiola et al., 2018; van der Ven et al., 2005).

Phytate, or phytic acid, is a hexaphosphate of myo-inositol
and is considered one of the more significant phosphate
reserves for the plant (Jaffe, 1981). Phytate is an ANF due
to its capacity to sequester metal ions (such as zinc, cal-
cium, magnesium, and iron), inhibit some enzymes involved
with digestion, and decrease the amount of starch and protein
absorbed by the animal (Elayabharathy, 2020; Maga, 1982).
Unlike TIs, phytate causes similar symptoms across most
species.

Soybean ranks as one of the top eight food allergens, and
as more soy is consumed globally, soy-based allergic reac-
tions are only expected to become more prevalent (Adolpho,
2019; Wang et al., 2022). The most impactful allergens in
soybean include P34, P28, and β-conglycinin (Ogawa et al.,
2000; Wilson et al., 2005). Allergic reactions to these aller-
gens include atopic dermatitis, vomiting, diarrhea, difficulty
breathing, indigestion, and hives (Adolpho, 2019; Candreva
et al., 2016). Exact symptoms and the intensity of the symp-
toms vary from person to person. There are only a few
investigations on allergic reactions of animals to soy products,
but some have found dogs, other pets, swine, and calves hyper-
sensitive to soy (Radcliffe et al., 2019). As soybean products
become more common, it is expected that there will be more
research analyzing any potential allergic reactions to soybean
in animal species.

As previously stated in this article, soybean has excel-
lent nutritional value due to widely known seed components.
While important, soybean does contain other nutrients of
interest, which include isoflavones (genistein, glycitein, and
daidzein), vitamins B1, B9, K, and E, and minerals, such as
copper, manganese, and molybdenum (Messina, 1999). Table
S8 provides information regarding the health benefits of each
of the previously mentioned nutrients. It is important to note
that these nutrients are present in low/trace levels in the seed
tissue (Institute of Medicine, 2001).

5.2 Genetic and genomic studies for other
functional components

Due to TI’s significant impact on animal health, developing
low-TI soybean varieties is an important goal for soybean

breeders. So far, breeders have used naturally occurring muta-
tions in the KTI gene in soybean to develop low-TI varieties.
There are five forms of KTI, which are labeled as Tia, Tib, Tic,
Tid, and ti, with ti being the low-TI-activity allele (Hymowitz,
1986). The ti allele is recessive and was found to be on Chr.
8 (LG A2) (Cregan et al., 1999). The three SSR markers,
Satt409, Satt228, and Satt429, have shown tight linkage with
this allele (M. S. Kim et al., 2006). More recently, kompetitive
allele-specific PCR (KASPar) markers have been developed
in order to help breeders identify low-TI soybean (Rosso et al.,
2021).

Due to the function of phytate interfering with animal
health, soybean breeders have worked on developing low-
phytate lines through a combination of traditional breeding.
The line, CX1834-1-2, was determined to have low phytate
levels due to two recessive mutant alleles in the soybean
homologues for the maize lpa1 gene, which is responsible
for decreased phytate in maize (Gillman et al., 2009). These
two alleles were later characterized as pha1 and pha2 loci and
were found to be associated with Chr. 3 (LG N) and Chr. 19
(LG L), respectively (Gao et al., 2008; Walker et al., 2006).
The loci on Chr. 3 (LG N) were found to account for 41%
of variation in phytic acid levels, and Chr. 19 (LG L) was
found to account for 11% (Walker et al., 2006). Additionally,
the SSR markers Satt237 on Chr. 3 (LG N) and Satt527 and
Satt561 on Chr. 19 (LG L) were found to be associated with
low phytate in soybean seed (Scaboo et al., 2009; Walker et al.,
2006). Lastly, mutations in the D-myo-inositol 3-phosphate
synthase 1 gene (MIPS1) were found to be responsible for
improved phosphorus levels in soybean, and breeders were
able to develop KASPar markers to identify this mutation
(Rosso et al., 2011).

Of the previously mentioned allergens, P34 is the most
critical. There are three genes in soybean known to be respon-
sible for P34 expression in soybean seed, which include
Glyma08g12270 (the main contributor), Glyma08g12280,
and Glyma05g29130 (Jeong et al., 2013). Breeders have iden-
tified two soybean accessions, PI 603570A and PI 567476,
that have naturally low P34 levels (Koo et al., 2013). It was
later determined that these two accessions have low P34 lev-
els due to an ATGT 4 base pair insertion in the front of the
P34 start codon, which is believed to decrease the translation
efficiency (Bilyeu et al., 2009; Koo et al., 2013). The low P34
loci was also mapped on Chr. 8 (LG A2) using SSR markers
(Watanabe et al., 2017).

While P34 is the main allergen of concern in soybean, β-
conglycinin is also important. Researchers have been able
to identify two soybean accessions, ‘Fukuyutaka’ and QY7-
25, which have the low β-conglycinin phenotype governed
by the dominant gene Scg-1 (suppressor of β-conglycinin)
(Zhang et al., 2021). Furthermore, 10 SNPs were found to
be associated with β-conglycinin deficiency between the two
lines Fukuyutaka and QY7-25 (Tsubokura et al., 2006). Two
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QTLs, linked to Satt461 and Satt249, on Chrs. 17 (LG D2)
and 16 (LG J), respectively, were found to be associated with
β-conglycinin (Panthee et al., 2004), and a QTL associated
with low β-conglycinin was mapped on Chr. 20 (LG I) in the
‘Misuzudaizu’ and ‘Moshidou Gong 503’ F2 mapping pop-
ulation (Tsubokura et al., 2006). Additionally, a Cgdef gene
was identified and mapped to Chr. 19 (LG L) located between
two SSR markers, Satt523 and Sat_388 (Hayashi et al., 2009).

While the other nutrients, like isoflavones and vitamins,
are important for human and animal health, they have not
received as much attention in terms of breeding research and
effort due to them being present in much lower levels than
other seed composition traits in soybean. With that being
said, isoflavones have had the most progress compared to
other nutrients (Wang et al., 2013). Researchers have been
able to identify two genomic regions, Satt144–Satt569 and
Satt540–Sat_240 (QTIF 1 and QTIM 1, respectively), in soy-
bean that are associated with increased isoflavone content
(Han et al., 2016). The QTL mapped on Chr. 13 (LG F) was
found to be associated with increased daidzein (QDZF 1),
genistein (QGTF 1 and QGTF 2), glycitein (QGCF 1), and
total isoflavone content (QTIF 1). The QTL mapped on Chr.
7 (LG M) was found to be associated with increased glycitein
(QGCM 1) and total isoflavone content (QTIM 1) (Han et al.,
2016; Zeng et al., 2009). Additionally, QTLs mapped on Chrs.
11 (LG B1) and 3 (LG N) were found to be associated with
glycitein content, and the QTLs mapped on Chrs. 5 (LG A1)
and 3 (LG N) were associated with daidzein content (Meksem
et al., 2001). There has been minimal work to determine QTLs
associated with vitamin E in soybean, but Gmpgl1 was found
to be responsible for the expression of a thiamine thiazole
synthase that allows for thiamin production in soybean (Feng
et al., 2019). To date, no QTLs or genes have been discovered
that are responsible for folate content in soybean, but it has
been identified that soybean germplasm from northern China
had higher folate levels compared to germplasms from other
areas (Agyenim-Boateng et al., 2022). Multiple QTLs asso-
ciated with vitamin E in soybean have been identified with
three main QTLs located in Chrs. 6 (LG C2) and 2 (LG D1b)
(Li et al., 2010). While soybean germplasm evaluation deter-
mined that vitamin K1, copper, manganese, and molybdenum
can vary across genotypes, no work has been done to identify
any genomic regions or genes that are related to the production
of these nutrients in soybean (Kastoori Ramamurthy et al.,
2014; Thompson et al., 2016).

5.3 Breeding efforts and future directions
for other functional components

Multiple low-TI soybean lines have been developed using the
naturally occurring low-TI accession PI 542044 from India,
which include NRC101 and NRC102 (Kumar et al., 2013).

KTI was removed from multiple elite varieties by utiliz-
ing marker-assisted breeding (Kumar et al., 2011; Maranna
et al., 2016). Additionally, breeders have harnessed genetic
engineering to create low-TI varieties. For example, low-
KTI mutant alleles have been created in soybean through
CRISPR/Cas9 to selectively knock out KTI expression in seed
tissue as well as molecular markers to identify those mutant
alleles (Wang et al., 2022). Due to the complex role of TI in
plant defense, genetic engineering efforts will likely grow in
usage. While low-TI lines have been developed, these lines
have low TI levels in all tissues, and as a result, they tend to
be more susceptible to pests. An ideotype would be a soybean
variety with low-TI content in the seeds while still expressing
normal TI levels in other tissues, such as roots and leaves. This
would enable the soybean variety to be more resilient against
pests while allowing the seed to require less processing time
for human and animal consumption. Unfortunately, traditional
breeding struggles to develop such a variety due to large
gene family affecting TI (Jofuko & Goldberg, 1989). Due
to this, genetic engineering tools, including CRISPR/Cas9,
could be useful for breeding low-TI soybean varieties due to
their ability to selectively target and knock out specific genes.
While both KTI and BBTI are important in soybean, KTIs
have received more attention than BBTI due to higher con-
centration in soybean seeds. BBTI has started to gain more
attention in breeding because its high activity level has sig-
nificant effects on animals when consumed (Z. Chen et al.,
2020). Because of this, it is expected that breeding efforts will
begin for developing varieties that have low BBTI content and
activity.

Breeders have used low-phytic-acid mutants, MIPS1 and
IPK1, to cross breed with cultivars containing normal phytate
levels (Goßner et al., 2019). This study has been able to lead
to the development of soybean varieties with phytate levels
reduced by 40%–70% depending on which parents were used
(Goßner et al., 2019). Besides this, other breeding attempts
for reduced phytic acid levels have resulted in soybean vari-
eties with 50%–95% reduced phytate level (Raboy, 2002).
Although phytate is an important ANF, it has not received as
much attention in breeding as other ANFs, such as TI. This is
most likely due to the inactivation methods of phytate being
cheap and easy to use (Lei & Porres, 2011). Currently, phy-
tate can be inactivated by adding the enzyme, phytase (Lei &
Porres, 2011). In addition to phytase being cheap and easy to
use, it is effective at improving the availability of trace ele-
ments and minerals, such as calcium, zinc, and iron (Hurrell,
2003; Lei et al., 1993). It is expected that low-phytate breeding
in soybean will continue to some degree but not to the same
extent as low-TI breeding largely due to phytase efficacy.

Due to P34’s relevance in human and animal health, soy-
bean breeders have started screening for low-P34 lines. So
far, seven G. soja accessions and two G. max accessions (PI
603570A and PI 567476) appear to have low levels of the
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P34 protein (Guan et al., 2012). These two accessions have
already been used to develop low-P34 soybean lines, and
breeding efforts for low P34 will likely increase. Regarding
P28, null accessions were identified in north spring soybean,
Huanghuai summer soybean, and south China soybean (Guan
et al., 2012). Additionally, roughly 80% of Japanese culti-
vars were found not to contain the P28 protein (Bando et al.,
1996). Due to these accessions and cultivars lacking P28, they
will most likely be incorporated into breeding schemes to
help develop low P28 lines. While soybean mutant lines that
lack or have reduced β-conglycinin levels have been devel-
oped, they showed poor plant growth (Guan et al., 2012).
While the reason is not understood, these mutants can be
used in breeding schemes and crossed with elite varieties
to combine low β-conglycinin, improved plant growth, and
enhanced yield compared to the mutant lines. Besides tradi-
tional breeding, a transgenic approach can also be utilized.
Transgenic soybean lines that lack P34 have been created
through transgene-induced gene silencing that had compara-
ble growth and yield to the wild type (Herman et al., 2003).
Due to the success of genetic modification to develop a soy-
bean line with no P34, it is possible that a transgenic approach
will also be used to develop soybean lines that lack other
allergens. Ideally, breeders would develop a soybean line that
lacks all soybean allergens, and genetic modification may be
one of the best methods to accomplish this. While breed-
ing for low-allergenic soybean lines is still relatively new,
breeders do have the necessary tools to develop high-yielding,
low-allergenic lines.

While there are other important nutritional factors in soy-
bean, such as isoflavones, vitamins, and minerals, they have
received minimal attention in breeding. This is not sur-
prising given that other traits in soybean tend to be more
significant and have a higher economic impact, like protein,
oil, and ANF content. However, there has been some work
to breed for an increase in isoflavone content in soybean.
Some researchers crossed the low-isoflavone-content NS-L-
146 variety to three other lines, NS Zenit, NS Maximus, and
NS Virtus, which exhibited low, medium, and high isoflavone
content, respectively (Miladinović et al., 2019). This work
surprisingly found that the cross between NS-L-146 and NS
Maximus, the medium isoflavone line, resulted in offspring
with the highest isoflavone content (Miladinović et al., 2019).
Since high-isoflavone soybean lines were identified, it is pos-
sible for breeders to use these lines to increase isoflavone
content. Some focus will likely shift to other vitamins and
minerals. This will include efforts to gain a better under-
standing of underlying genetics as well as identify naturally
occurring soybean accessions that have high levels of these
vitamins and minerals. Additionally, as genetic understand-
ing is unlocked, new technologies, such as CRISPR/Cas9,
can be used to develop soy varieties that have increased lev-
els of these nutrients. As soybean consumption continues to

increase, it is expected that breeders will start to increase
their focus on other nutrients in addition to major soybean
seed characteristics in order to continue improving soybean
for consumer health.

5.4 Food grade considerations for other
functional components

Raw and roasted soy flour are rich in calcium (from 188 to
206 mg·100·g −1) (Martino et al., 2008). However, the posi-
tive correlation between calcium content in the seed coat and
seed hardness poses a challenge during processing, especially
in soybean sprouting, natto manufacturing, and fermented soy
products, due to the occurrence of stone seeds that do not
absorb water during soaking (Mullin & Xu, 2001; Saio, 1976).
However, this correlation is not always consistent due to envi-
ronmental effects such as soil type and temperature variations
(Chen et al., 2001; Mullin & Xu, 2001).

Using soybean varieties with low calcium content can par-
tially solve the stone seed issue. Soybean seed calcium content
varies between cultivars (0.19%–0.52%) and has a heritability
of 41%–63% (Chen et al., 2001; Malle, Morrison, et al., 2020;
B. Zhang et al., 2008). Zhang et al. (2009) reported four QTLs
associated with calcium content in soybean seeds on Chrs. 7
(LG M), 8 (LG A2), and 20 (LG I), using 148 SSR markers
and 178 F2:3 and 157 F2:4 lines. Orazaly et al. (2018) reported
markers Satt267 and Sat_345 on Chr. 1 (LG D1a), Sat_288
on Chr. 7 (LG M), Sat_228, Satt341, and Sat_392 on Chr.
8 (LG A2), Satt547 on Chr. 16 (LG J), and Satt002 on Chr.
17 (LG D2) as reliable for calcium content selection. Addi-
tionally, Malle, Morrison, et al. (2020) conducted a GWAS
based on a core set of 137 Canadian soybean lines. Two QTLs,
Ca_#3 (Gm06: 3,354,869) and Ca_#4 (Gm09: 6,092,970),
were associated with soybean seed calcium content, and a
candidate gene Glyma.06G046000, involved in calcium trans-
port, was found to be significantly associated with calcium
content in seeds and expressed in various plant tissues (i.e.,
young leaves, flowers, main roots, pods as well as in seeds).

6 EMERGING TECHNOLOGIES

6.1 Introduction to emerging breeding
technologies

Throughout this article, the various seed composition traits
of soybean as well as breeding efforts to improve them have
been discussed. While traditional breeding has accomplished
a significant amount of progress, there are new, emerg-
ing technologies that breeders have started to incorporate.
These technologies include CRISPR/Cas9 gene editing, high-
throughput phenotyping, and high-dimensional genomic data
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for genomic prediction and selection purposes. These meth-
ods have been employed to make varieties with unique traits,
overcome obstacles that traditional breeding has struggled
against, and increase the speed and accuracy of breeding.

CRISPR/Cas9 allows scientists and breeders to precisely
edit the DNA of living cells. It can be utilized in many
organisms including plants, animals, bacteria, and fungi. The
technology works by using a “guide” RNA molecule to direct
a Cas9 enzyme to a specific location in the genome, where it
makes a cut to trigger the cell’s natural DNA repair mecha-
nisms, which can be manipulated to either introduce specific
genetic changes or remove existing ones (McCarty, 2020).
This creates a powerful instrument for quickly generating
genetic diversity for breeding, allowing researchers to develop
new varieties with unique traits (Synthego, n.d.). Many suc-
cessful applications have already reported increased yield,
nutritional content, and crop resilience to biotic and abiotic
stressors (Zaidi et al., 2020). For example, CRISPR/Cas9 has
improved yield in rice by targeting the Gn1a, DEP1, GS3,
and IPA1 genes (Li et al., 2016), increased vitamin A content
in rice (Paine et al., 2005), developed powdery mildew-
resistant tomatoes (Nekrasov et al., 2017), and developed
drought-resistant maize varieties (Shi et al., 2017). Over-
all, CRISPR/Cas9 is an incredibly versatile tool that has the
potential to revolutionize crop breeding and help to address
global food security challenges.

High-throughput phenotyping involves the use of an auto-
mated system to analyze quickly and precisely one or several
traits. Due to their ability to collect large-scale and high-
dimensional data, high-throughput phenotyping platforms
have gained the attention of plant breeders as they can
reduce the time, cost, and labor of data collection in breeding
programs. Examples include NIRS for measuring seed com-
position traits as well as unmanned aerial vehicles and ground
robots for measuring a variety of traits, ranging from agro-
nomic traits to stress resilience (Cabrera-Bosquet et al., 2012;
Yang et al., 2020).

The availability of high-dimensional genomic data (Song
et al., 2013, 2020) combined with advancements in genome-
based prediction and selection has contributed to accelerated
genetic gains in plant breeding programs (Jarquín, Crossa,
et al., 2014; Jarquín, Kocak, et al., 2014; Vieira et al., 2022;
Widener et al., 2021). The concept revolves around using
all known molecular marker information to develop predic-
tion models for the phenotype of interest with unobserved
genotypes (Meuwissen et al., 2001). Thus, it allows for ear-
lier identification and selection of promising genotypes in
the breeding pipeline, which not only reduces costs, time,
and space but potentially enhances genetic gain by shorten-
ing breeding cycle length and increasing selection intensity
(Crossa et al., 2017; Jarquín, Kocak, et al., 2014; Vieira &
Chen, 2021; Wartha & Lorenz, 2021).

6.2 Emerging technology uses in soybean
breeding for seed composition

CRISPR/Cas9 has been used to edit a variety of traits in
soybean including biotic and abiotic stressors tolerance, agro-
nomic traits, and improved seed composition and nutritional
profile (Xu et al., 2020). For instance, CRISPR/Cas9 has been
used to create early-flowering soybean genotypes, drought-
tolerant soybean, and Phytophthora sojae-resistant soybean
(Han et al., 2019; Liu et al., 2023; Zhong et al., 2022). While
there has been a significant amount of work involving the
use of CRISPR/Cas9 to augment a wide range of traits, this
section will only focus on CRISPR/Cas9’s involvement with
traits related to seed composition. This technology has been
used to increase the content of nutrients as well as decrease
the content of ANFs. It has been used to increase the oleic
acid content while simultaneously decreasing the linolenic
acid (Chen et al., 2011; Demorest et al., 2016; Wu et al.,
2020), as well as combining these traits with a decrease
in linoleic acid (Do et al., 2019). CRISPR/Cas9 has also
been utilized to improve protein content through the edit-
ing of the AIP2 gene (Shen et al., 2022). Remarkably, there
have been cases of developing soybean varieties combining
both improved protein and oil content, which were previously
demonstrated to have a strong pleiotropy and negative corre-
lation. In this particular case, researchers were able to develop
soybean progenies with increased oleic acid and protein con-
tents while significantly decreasing linolenic acid content by
knocking out the GmFAD2-1A and GmFAD2-2A genes (Wu
et al., 2020). This multiplexing of traits has also been used to
improve the isoflavone content of soybean and decrease the
content of the RFOs (Cao et al., 2022; Zhang et al., 2020).
Lastly, CRISPR/Cas9 has been used to significantly decrease
the content of ANFs, KTI, P28, and P34 of soybean seeds
(Sugano et al., 2020; Wang et al., 2022).

While high-throughput phenotyping is already an
extremely useful tool for soybean breeders, improved
methods are constantly being developed and adopted by
the soybean breeding community. NIRS has substantially
contributed to the improvements of protein and oil in soy-
bean. The development and calibration of superior models
have allowed NIRS to estimate additional seed composition
traits, such as amino acids, fatty acids, sucrose, and even
total isoflavone content (Choung, 2010; Pazdernik et al.,
1997; Sato et al., 2008). The advancements in robotics,
artificial intelligence, and NIRS capacities are allowing
the development of real-time, nondestructive, single-seed
characterization for physical and chemical properties. An
example is the QSorter Explorer, which accurately sorts
and groups seeds on an individual basis based on a variety
of traits including protein and oil as well as specific fatty
acids (QSorter Technology, n.d.). This allows breeders to
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easily identify seeds with desirable composition as well as
facilitating the process of purifying seeds for field trials and
commercialization.

Genomic selection has been used in breeding schemes to
enhance different traits in soybean, including stress resilience,
seed composition, agronomic traits, and ultimately seed yield.
For protein and oil content, genomic selection has been found
to have moderate to high efficacy and accuracy, ranging from
40% to 80% (Duhnen et al., 2017; Jarquin et al., 2016; Small-
wood et al., 2019; Stewart-Brown et al., 2019). While protein
and oil content are two of the primary traits studied in soy-
bean breeding, genomic prediction and selection pose limited
benefits given the availability of methods that can effectively
quantify seed protein and oil quickly and cost effectively.
Instead, genomic prediction and selection have focused on
traits that are labor intensive and/or costly to measure, such
as amino acids and carbohydrate profiles. Genomic predic-
tion and selection for amino acid composition are effective
and have high selection efficiency with up to 16 amino acids
including Ala, His, Ile, Leu, Lys, Phe, Thr, Met, and Val
as well as arginine, asparagine, glutamine, glycine, proline,
serine, and tyrosine—ranging between 20% and 80% depend-
ing on the amino acid (Qin et al., 2019; Singer et al., 2022).
Additionally, multivariate genomic prediction models can be
deployed to improve multiple traits simultaneously (Jia & Jan-
nink, 2012). Multivariate models have been used to predict
traits of interest, such as chlorophyll content in conjunction
with soybean cyst nematode (Heterodera glycines) resistance,
and have been found to improve prediction accuracies com-
pared to univariate models (Okeke et al., 2017; Ravelombola
et al., 2019). In seed composition, multivariate models have
the potential of improving a variety of seed composition traits
simultaneously, including selection for higher protein and
oil content, as well as amino acid, carbohydrate, and ANF
content.

6.3 Future directions for emerging
technologies

Although there have been many successes in soybean seed
composition improvement, further advancements have been
hindered by technological obstacles. The two primary obsta-
cles are obtaining stable soybean mutants after transformation
and finding suitable genotypes of soybean that can be trans-
formed (Xu et al., 2022). As of now, nonelite cultivars, such
as Jack and Williams 82, are primarily used in transforma-
tion (Paz et al., 2004). While these lines are highly suitable
for transformation, they lack the high-yielding genetic back-
ground of modern cultivars. Currently, few elite lines have
been transformed (Jing et al., 2016; Zhang et al., 2014).
Ideally, breeders would be able to transform a wide vari-
ety of soybean varieties to develop elite lines with improved

nutrient traits. To fully utilize CRISPR/Cas9 to accelerate
breeding, more work is needed to overcome these obstacles.
Doing this will enable breeders to transform elite lines that
are adapted to their respective areas of interest. This will
increase the breeding speed by allowing breeders to eliminate
the step of crossing the transformed cultivars with adapted,
elite lines. Additionally, CRISPR/Cas9 has been successfully
used to multiplex traits. As gene editing technology contin-
ues to improve, there is no doubt that breeders will use it to
multiplex a variety of improved seed composition traits into
one variety. This will likely expand to multiple composition
traits, such as a variety having allergens, TI, and other ANFs
knocked out.

Similarly, the high-throughput phenotyping methods will
continue to advance. Even though NIRS has been heavily used
to quickly measure a variety of seed composition traits, there
are still some traits that it cannot precisely measure. These
traits include ANFs, such as KTI and BBTI, vitamin and min-
eral content, carbohydrates, and individual isoflavones. As
this technology continues to improve, breeders will be able
to select desirable traits in a high-throughput manner with
minimal labor requirements, costs, and inputs.

Genomic prediction and selection have revolutionized
plant breeding by predicting unobserved traits that are labor
intensive and costly to measure. Although minimal appli-
cations have been deployed in seed composition-related
traits, genomic prediction and selection can substantially help
improve seed composition traits such as ANFs, isoflavones,
vitamins, minerals, and carbohydrates. For instance, genomic
prediction and selection can be used for KTI and BBTI as
opposed to just overall TI content. Lastly, due to the increased
efficacy of multivariate models compared to univariate mod-
els, genomic selection can be used to help breeders improve
multiple traits simultaneously. This could be particularly use-
ful for breeding for allergens and isoflavones since it is neces-
sary to have soybean varieties with augmented concentration
of many allergens and isoflavones simultaneously.

7 CONCLUSION

Soybean is a historically and contemporarily important crop
because of its valuable seed composition and the ability
of plant breeders to adapt soybean globally in addition to
maximizing seed value. Diverse and innovative process-
ing methods have also expanded the functionality of single
seed by unlocking each unique seed component. This util-
ity provides measurable, added value that can be obtained
by targeting specific market demands through traditional,
molecular, and novel breeding approaches. More specifically,
breeders can continue to use genetic and phenotyping tech-
nologies to emphasize seed composition alongside agronomic
traits.
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With the advent of MAS, plant breeders could now success-
fully use genetic information to accelerate their breeding pro-
grams through known genes or genetic linkage that was strong
enough between a marker and an unknown causal variant.
As markers improved alongside next-generation sequencing,
high-density molecular markers, and whole-genome rese-
quencing, the return on investment for MAS also improved.
These advancements have also bolstered the progress of
genomic prediction and genomic selection models. Applica-
tion of genomic prediction and genomic selection to many
quantitative seed composition traits could discover genetic
gain previously limited by MAS.

Similar progress has occurred in technologies for genetic
engineering and high-throughput phenotyping, which could
further enhance a plant breeder’s ability to develop new
varieties. From genetically modified organisms (GMOs) to
gene editing, breeding schemes have the potential to shift
paradigms from selecting the best to designing the best.
In soybean, genetic engineering shows enormous potential
for translating genetic mechanisms to field realization, with
GMO varieties finding significant herbicide tolerance success
and gene editing methodologies evolving rapidly. However,
neither has shown an immediate proclivity for nutritional
improvement. A combination of seed compositions being
broad, quantitative traits and the soybean plant itself being
difficult to transform will require substantial efforts to over-
come. At the other end of the spectrum, high-throughput
phenotyping technologies could allow breeders to surmount
the phenotyping bottleneck by quantifying phenotypes with
greater breadth, depth, and speed. Specifically, sensors and
calibration models that could quantify seed components
would make nutritional breeding targets more accurate and
dependable, and partitioning out variations over time or in
combination with environmental conditions will be able to
investigate complex inheritance and genetics by environment
mechanisms. This will be increasingly important as breed-
ers tackle imminent challenges such as selecting for dynamic
environments resulting from shifting climates and erratic
weather patterns, combining comprehensive nutritional com-
positions or <50% protein in high yielding backgrounds, and
fulfilling the growing demand for plant-based protein sources.

Soybean breeders have aptly adopted technologies to match
producer, environmental, and market needs of soybean to
develop consistent and competitive varieties. Continually
maximizing value and utility through seed composition will
require the same tactical application of emerging technologies
to the diversity of soybean germplasm and the complexities of
environmental interactions.
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